Platform Software Verification Framework Solution for Safety Critical Systems
Description
Aerospace and Automotive industries are growing rapidly, from mechanical controls to electronic controls. This has increased the complexity of software running on powerful airborne hardware/systems. Thus, the safety of these software relies heavily on the verification. Advancing aerospace and automotive technologies require complex designs of hardware and RTOS. So, verification of platform software per safety-critical standards (i.e. DO 178B/C[2]) is significant, involving more resources in terms of cost and time. Verification of platform software components needs a mixture of different approaches [1]. Here, in this paper, we shall discuss the challenges involved in various verification platform software framework solutions for ARINC-653-based operating system and how a single framework, PSW eIHTestCon can resolve these challenges.
Fill in the details below
Description
Aerospace and Automotive industries are growing rapidly, from mechanical controls to electronic controls. This has increased the complexity of software running on powerful airborne hardware/systems. Thus, the safety of these software relies heavily on the verification. Advancing aerospace and automotive technologies require complex designs of hardware and RTOS. So, verification of platform software per safety-critical standards (i.e. DO 178B/C[2]) is significant, involving more resources in terms of cost and time. Verification of platform software components needs a mixture of different approaches [1]. Here, in this paper, we shall discuss the challenges involved in various verification platform software framework solutions for ARINC-653-based operating system and how a single framework, PSW eIHTestCon can resolve these challenges.
Fill in the details below
Description
Aerospace and Automotive industries are growing rapidly, from mechanical controls to electronic controls. This has increased the complexity of software running on powerful airborne hardware/systems. Thus, the safety of these software relies heavily on the verification. Advancing aerospace and automotive technologies require complex designs of hardware and RTOS. So, verification of platform software per safety-critical standards (i.e. DO 178B/C[2]) is significant, involving more resources in terms of cost and time. Verification of platform software components needs a mixture of different approaches [1]. Here, in this paper, we shall discuss the challenges involved in various verification platform software framework solutions for ARINC-653-based operating system and how a single framework, PSW eIHTestCon can resolve these challenges.
Fill in the details below