
MODEL-BASED DESIGN FOR
EMBEDDED SOFTWARE

White Paper

MODEL-BASED DESIGN for EMBEDDED SOFTWARE

Need for Model Based Development

Model-based design (MBD) is a framework used in virtual prototyping of embedded software. MBD has evolved to

overcome various difficulties and complexities that typically arise during the design lifecycle of embedded software for

closed-loop control systems. Such software needs to be designed in an iterative manner with extensive involvement

of multi-disciplinary teams. In most practical scenarios, the need for embedded software design has to start early (as

well as tested) before physical prototypes and systems are made available. Using traditional design processes, the

discovery of design and requirements errors found late in the design cycle can lead to expensive delays. The MBD

framework aims to address these issues early on in the design phase while significantly minimizing the rework involved

in later phases of lifecycle.

In traditional design processes, the design information is usually communicated and managed in the form of text-

based documentation. Frequently, such documentation is difficult to understand and subject to interpretation bias.

The embedded code is created manually from specifications and requirements documents, hence, leading to a time-

consuming and error-prone process. There is also little tracking to ensure that changes are implemented correctly.

Embedded software designs, such as those used in avionics and automotive systems, have become so complex to

develop and create that a design environment without coordination is becoming common for all developers involved.

In this context, MBD, when used effectively, is able to provide a single design environment so that developers can

use a single model of their entire lifecycle for data analysis, model visualization, testing and validation, and ultimately

product deployment, with or without automatic code generation.

Brief Introduction to MBD

At its minimum, MBD can be used as a specification which contains far greater details compared to text-based

specifications. In real-time applications, they enable developers to evaluate multiple options, predict system

performance, test system functionality by imposing I/O conditions that might be operationally expected (before

product deployment), and test designs in a virtual/simulated environment.

After the model is built and completely tested, real-time embedded code can be automatically generated for the

production quality embedded deployment, which saves time and reduces costs compared to traditional manual

coding. Model-based designs with automatic code generation can also be used in rapid prototyping, enabling

subsystem designs to be tested and optimized.

Model-based design is very important in highly complex design applications such as guidance systems, engine

controls, autopilots, anti-lock braking systems, to name a few. They can also be used effectively and economically for

less complex designs.

MBD creates a structure for software reuse that allows established designs to be effectively and reliably upgraded in a

more cost effective manner.

2

“Lifecycle” in MBD Framework

MBD refers to the use of models and modelling environments as the basis of embedded systems development. A

model represents a dynamic system whose response at any time is a mathematical function based on their inputs,

current state, and current time. MBD provides graphical modelling environments consisting of block diagrams and

state machines and is used to analyze, simulate, prototype, specify, and deploy software algorithms within a variety of

embedded systems and applications.

Systems for which embedded software can be developed using MBD include:

• Aircraft avionics systems

• Commercial vehicle electronics

• Power plant regulators

• Digital motor controllers

• Medical devices

• Audio signal processors

3

Figure 1: MBD workflow within V Cycle

MODEL-BASED DESIGN for EMBEDDED SOFTWARE

4

The Model-Based Design framework typically includes the following steps:

• Modeling

• Simulation

• Rapid prototyping

• Embedded deployment

• In-the-loop testing

• Integral activities

Modeling:
System Modeling activities involve creating a mathematical and behavioral representation of the system under

consideration. Within an MBD framework, it refers to a visual method used to design complex control systems,

communication systems and signal processing systems. Such systems represent a dynamic setup whose response at

any time is a mathematical function based on their input, current state and current time.

In a graphical modeling environment, the use of block diagrams and state machines enable faster design and

implementation. Blocks and lines can be real or virtual. Virtual blocks or lines have no effects on the simulation results

but help in constructing or understanding diagrams. Blocks and subsystems can be stored in custom libraries for reuse

and abstraction. This enables consistency across subsequent design cycles as well.

Models can be classified as either continuous-time systems or discrete-time systems depending on whether the

model contains continuous or discrete dynamics. A continuous-time system is a system where the state of the system

is continuously changing. Continuous system models are used to represent analog signals or real-world effects where

time continues without interruption. Such continuous time models represent systems under control such as vehicle,

turbine, hydraulic actuator or a chemical reactor.

A discrete-time system is one in which the state of the system changes at finite intervals of time. An example of a

discrete-time system is an embedded software running on a microcontroller since it relies on clocks or interrupts to

begin executing an algorithm. A typical system model can be hybrid and may contain both continuous-time and

discrete-time dynamics. Simulation and code generation are integral parts of MBD Framework.

Simulation:
During simulation, continuous-time systems are solved using numerical integration. There are two types of solvers that

are used within MBD environments. These are:

• Fixed-step solvers

• Variable-step solvers

Fixed-step solvers use explicit methods to compute the next continuous state at fixed periodic intervals of time. A

variable-step solver uses explicit or implicit methods to compute the next continuous state at non-periodic intervals

of time. A sample time also needs to be selected. For fixed-step solvers, the sample time is the fixed step time and

for variable-step solvers, the sample time is the maximum allowable sample time. So, the goal during simulation is to

choose a sample time and integration method that will provide an accurate approximation of the continuous system’s

behaviour.

MODEL-BASED DESIGN for EMBEDDED SOFTWARE

5

Variable step solvers and continuous-time systems do not lend themselves well to deterministic real-time executables,

so this combination should be used carefully on those portions of the model that are targeted while design of

embedded system software design and subsequent code generation. The discrete systems, on the other hand, have

their states explicitly updated and are well-suited for code generation. They execute at an appropriate sample time,

or interrupt, and generate outputs. If a system has only one sample time, it is single rate. If the system has multiple

sample times, it is multirate. The multirate systems can be executed using either a single tasking form of execution or

a multitasking form. In case multitasking execution is used, it often conforms to rate monotonic scheduling within the

embedded RTOS environment.

Rapid prototyping:
Rapid prototyping provides a fast and cost-effective way for control and signal processing engineers to verify designs

at early stage and evaluate design trade-offs.

Bypass rapid prototyping – Here, code is generated from the controller or algorithm model. The code is then

cross-compiled and downloaded to a high-speed, rapid-prototyping computer where it executes in real time. I/O

is managed by memory pod or emulation device that is connected to both the rapid prototyping computer and an

existing embedded controller (e.g. usually an existing ECU or LRU). The controller parameters are tweaked “on-the-

fly” during test drives or in the lab involving the actual plant (e.g., engine) while allowing for the insertion of new code

to bypass existing ECU code. The design is finalized when performance requirements are met, proving that the new

algorithm is practicable. Please see Figure 2.

On-target rapid prototyping – As in the case of bypass rapid prototyping, the code is generated just for the controller

portion of the model. Then the code is cross-compiled and downloaded on to the embedded microprocessor inside

ECU/LRU used for final deployment. Alternatively, the code can be executed on an embedded platform that is a very

close approximation of ECU/LRU and configured with a similar memory and I/Os. It often uses a fixed-point integer

micro-processor and hence, needs a more detailed, fixed-point model, as opposed to the floating-point processors

and models used for bypass rapid prototyping. The I/Os are managed via standard ECU/LRU devices.

The host computer then interfaces directly with the ECU/LRU hardware that is typically mounted on the system under

control. The controller parameters are tweaked “on the- fly.” Success is stated when performance requirements are

 Harness

Controller Model Plant Model

Rapid Prototyping Target System (e.g. Brake Hydraulics, Engine, Turbine)

Figure 2: Bypass rapid prototyping

MODEL-BASED DESIGN for EMBEDDED SOFTWARE

6

met, proving that the new algorithm is both possible and practical. See Figure 3.

Embedded deployment:
After rapid prototyping, a detailed software design activity is performed to convert the controller model to a detailed,

executable software specification. The model is created and elaborated to perform properly on embedded system

hardware. Embedded code (often highly optimized) is then generated from the model for the detailed controller

model and downloaded to the actual embedded microprocessor or ECU as part of the production software build.

Often, minimum amount of simulation activity is associated with this step. The key here is to ensure that the final build

on ECU/LRU encompasses fully integrated, automatically generated code with existing legacy code, I/O drivers, and

real-time operating system (RTOS) software.

There are two approaches to code-generation embedded deployment. The first approach is to generate code for

the functions and then integrate into the overall hand written application. A second, emerging approach is to use the

model to generate the entire application.

IN-THE-LOOP testing:
To combine hardware and production code into model-based testing, one can compare dynamic outputs of models

with data collected through software-in-the-loop and processor-in-the-loop test or with data measured in the test lab,

using the data inspector or logging tools.

 Harness

Controller Model Plant Model

Embedded Target (LRU/ECU) System (e.g. Brake Hydraulics, Engine, Turbine)

Figure 3: On-target rapid prototyping

Controller
Model

Plant
Model

Host-Compiled C with S-
function wrapper (DLL)

Code Generation

Simulink

Figure 4: Software-in-the-loop (SIL)

MODEL-BASED DESIGN for EMBEDDED SOFTWARE

7

Software-in-the-loop (SIL):
This testing includes executing the production code for the controller within the modeling environment for non-real-

time execution with the plant model and interaction with the user. The code executes on the same host platform that

is being used by the modeling environment. A code wrapper of the generated code provides the interface between

the simulation and the generated code as shown in figure 4.

Processor-in-the-loop (PIL):
This testing is similar to SIL in that it also executes the production code for the controller. However the code executes

on the actual embedded processor or an instruction set simulator, so that this verifies the code behaviour on the

actual target. Real I/Os via CAN or serial devices are used to pass data between the production code executing on

the processor and a plant model executing in the modelling environment. As with SIL, PIL testing is a non-real-time

execution scenario as shown in figure 5.

Hardware-in-the-loop (HIL):
In this testing, the code is also generated for the plant model. It runs on a highly deterministic, real-time computer.

Signal conditioning and power electronics are needed to properly stimulate the ECU/LRU inputs (sensors) and receive

the ECU/LRU outputs (actuator commands). Whereas, rapid prototyping is often a development or design activity, HIL

serves as a final lab test phase before final system integration and field tests commence. See Figure 6.

Controller
Model

Plant Model

 Embedded Target

Code Generation

Simulink

Figure 5: Processor-in-the-loop (PIL)

Figure 6: Hardware-in-the-loop (HIL)

Code Generation Code Generation

Plant
Model

Real-time
PC

Controller
Model

I/O
Interfaces

 Engine Control Unit
(ECU)

Simulink

 Harness

MODEL-BASED DESIGN for EMBEDDED SOFTWARE

8

Integral activities:
Most of the MBD environments automate the generation of documentation from models. In this case, the

documentation is in template form allowing users to specify the content of each documentation section. The

requirements traceability is accomplished using interfaces between blocks in the model and existing requirement

management sources. The code generated from the model can also be traced back to the block, letting auditors trace

high-level requirements all the way back to the code. As with requirements management, the source control for a

model may be accomplished outside the modeling environment using existing source control products. Interfaces are

provided that let developers check in and check out models as well as document the changes.

MODEL-BASED DESIGN for EMBEDDED SOFTWARE

9

MBD for migration and optimisation of DSP libraries – Case Study 1:

In this project, eInfochips team converted highly complex DSP algorithms library from embedded C into optimized

Simulink Models. The C DSP libraries are used for audio and video compression. The major benefits of the code to

model migration process are:

• Model is easier to maintain and document compared to legacy code and algorithms

• Features additions and enhancements – shorter time cycles with MBD

• Model-based autocode generation – easier migration during hardware upgrades

• Automatic test case generation from Models – reduce V&V iterations

• Effective as knowledge capture mechanism

eInfochips team has implemented the process below in Figure 7 for the MBD migration:

Performance evaluation:
Along with benefits of the MBD framework listed above, it is often necessary to compare the real-time performance of

the auto-code generated from Simulink models with original hand-written C code. Table no. 1 shows results derived

for one of the DSP algorithm: FIR filter with 87 taps. From inspection of the results, it is observed that the auto-code

generated from a model is efficient and needs a smaller amount of CPU time to execute than the equivalent hand

code.

Figure 7: C Hand code to MBD Migration

Table 1: Average Time taken by FIR function for three
different inputs

MODEL-BASED DESIGN for EMBEDDED SOFTWARE

10

MBD for real-time diagnostics system – Case Study 2:

In this project, eInfochips team designed real-time algorithms for on-board fault diagnostics using an MBD framework.

The setup consists of a simulation of a 5 MW wind turbine and its speed and yaw control system. This setup allows

insertion of system and sensor faults by means of changes to parameters and additional signal injections at suitable

points. The diagnostics algorithms must detect the faults in real-time so that corrective actions can be initiated by the

control system or a supervisory logic.

Such algorithms operate on sensor data as well as on prior design data. In case of high value and/or critical

engineering systems (e.g. wind turbine, jet-engine) the diagnostics shall run in real time to prevent catastrophic

situations or costly repairs before a fault propagates within the system. In this context, eInfochips has created a

solution for real-time monitoring applicable to systems such as complex electro-mechanical systems and rotating

machinery. The fault detection algorithms library includes Kalman filters (EKFs), fault tree tables (FTTs), fast Fourier

transform (FFT) frequency analyzer and others. This solution is capable of running on various prototyping and

deployable embedded platforms based on TI AM57x, Freescale MPC56xx, ARM CORTEX M4 and Arduino. Figure 8.

shows the setup and some of the results from real-time HIL rig.

Figure 8: MBD of real-time diagnostics solution

MODEL-BASED DESIGN for EMBEDDED SOFTWARE

11

ABOUT AUTHORS

Dr Mangesh Kale is Senior Solution Architect and Key Accounts Manager at eInfochips. He has industry

experience of more than 18 years in engineering, technology design and solutions for safety critical control

systems hardware and software. Mangesh leads the aerospace practice group at eInfochips with responsibility

of new technology initiatives and research & development initiatives. Mangesh has a PhD from The University of

Southampton, UK in flight control systems, Masters of Engineering from Indian Institute of Science Bangalore and

Bachelors of Engineering from University of Pune, India.

Anupama Shendage is an engineer at einfochips. Her area of interest includes Digital signal processing,

Embedded Systems, image processing and automotive advancements and applications. She has done Bachelors

degree in Electronics and Telecommunication engineering from Department of Technology Kolhapur, India.

References:
1. A. V. Oppenheim and R. W. Schafer, “Discrete-Time Signal Processing”, Prentice Hall; US ed edition (2 January 1975)

2. Vinay K. Ingle, John G. Proakis, Northeastern University, ‘’Digital Signal Processing Using MATLAB’’, Third Edition,

Global Engineering: Christopher M. Shortt, 2010.

3. William Alberto, Quinchanegua Sánchez, ‘’Signal Processing Implementations Using Simulink’’, www.ece.uprm.edu/

crc/crc2003/papers/Alberto_QunchaOr.pdf

4. The Mathworks, Inc, https://in.mathworks.com/solutions/dsp/

MODEL-BASED DESIGN for EMBEDDED SOFTWARE

About eInfochips
eInfochips is a global technology firm specializing in product engineering and software R&D services, we enable

digital transformation for companies in Aerospace, consumer devices, Automotive devices, industrial automation,

media and broadcast, medical devices and healthcare, We have contributed to 500+ products and over 10m

deployments across the world. The company has a proud 20-year history, focused exclusively on R&D services for

product companies. We have grown organically over that time to more than 1500 engineering, serving clients from our

US headquarters in Sunnyvale, California and from sales and design centers across the US and India. The company has

sales presence in across the world such as USA, UK, Japan, Canada, and India.

MODEL-BASED DESIGN for EMBEDDED SOFTWARE

