TMDSEVM6472 / TMDSEVM6472LE **Technical Reference Manual** Version 2.0

Literature Number: SPRUFU2 Revised March 2011

Centrochips The Solutions People

Document Copyright

Publication Title: TMDSEVM6472/ TMDSEVM6472LE Technical Reference Manual All Rights Reserved. Reproduction, adaptation, or

translation without prior written permission is prohibited, except as allowed under the copyright laws.

EVALUATION BOARD/KIT/MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMER

Not for Diagnostic Use: For Feasibility Evaluation Only in Laboratory/Development Environments.

The EVM may not be used for diagnostic purposes.

This EVM is intended solely for evaluation and development purposes. It is not intended for use and may not be used as all or part of an end equipment product.

This EVM should be used solely by qualified engineers and technicians who are familiar with the risks associated with handling electrical and mechanical components, systems and subsystems.

Your Obligations and Responsibilities.

Please consult the EVM documentation, including but not limited to any user guides, set up guides or getting started guides and other warnings prior to using the EVM. Any use of the EVM outside of the specified operating range may cause danger to the users and/or produce unintended results, inaccurate operation, and permanent damage to the EVM and associated electronics. You acknowledge and agree that:

You are responsible for compliance with all applicable Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, UL, CSA, VDE, CE, RoHS and WEEE,) that relate to your use (and that of your employees, contractors or designees) of the EVM for evaluation, testing and other purposes.

You are responsible for the safety of you and your employees and contractors when using or handling the EVM. Further, you are responsible for ensuring that any contacts or interfaces between the EVM and any human body are designed to be safe and to avoid the risk of electrical shock.

You will defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of this agreement. This obligation shall apply whether Claims arise under the law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Warning

The EVM board may get very hot during use. Specifically, the DSP, its heat sink and power supply circuits all heat up during operation. This will not harm the EVM. Use care when touching the unit when operating or allow it to cool after use before handling. If unit is operated in an environment that limits free air flow, a fan may be needed.

Preface

About this Document

This document is a Technical Reference Manual for TMS320C6472 EVM designed and developed by elnfochips Limited for Texas Instruments, Inc.

Notational Conventions

This document uses the following conventions:

Program listings, program examples, and interactive displays are shown in a mono-spaced font. Examples use **bold** for emphasis, and interactive displays use bold to distinguish commands that you enter from items that the system displays (such as prompts, command output, error messages, etc.).

Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify the information within the brackets. Unless the square brackets are in a bold typeface, do not enter the brackets themselves.

<u>Underlined, italicized non-bold</u> text in a command is used to mark place holder text that should be replaced by the appropriate value for the user's configuration.

SPRUFU2 - Revised March 2011

Trademarks

The Texas Instruments logo and Texas Instruments are registered trademarks of Texas Instruments. Trademarks of Texas Instruments include: TI, XDS, Code Composer, Code Composer Studio, Probe Point, Code Explorer, DSP/BIOS, RTDX, Online DSP Lab, TMS320, TMS320C54x, TMS320C55x, TMS320C62x, TMS320C64x, TMS320C67x, TMS320C5000, and TMS320C6000.

MicroTCA and AMC (or AdvancedMC) are trademarks of PICMG.

All other brand, product names, and service names are trademarks or registered trademarks of their respective companies or organizations.

Document Revision History

Release	Chapter	Description of Change
1.0	All	First Draft
2.0	All	Updated for TMDSEVM6472LE

Acronyms

Acronym	Description	
AMC or AdvancedMC	Advanced Mezzanine Card	
CCS	Code Composer Studio	
DDR2	Double Data Rate 2 Interface	
DIP	Dual-In-Line Package	
DSP	Digital Signal Processor	
DTE	Data Terminal Equipment	
EEPROM	Electrically Erasable Programmable Read Only Memory	
EMAC	Ethernet Media Access Controller	
EMIF	External Memory Interface	
EVM	Evaluation Module	
FPGA	Field Programmable Gate Array	
HPI	Host Port Interface	
HPI DC	Host Port Interface Daughter Card	
12C	Inter Integrated Circuit	
IPMB	Intelligent Platform Management Bus	
IPMI	Intelligent Platform Management Interface	
JTAG	Joint Test Action Group	
LED	Light Emitting Diode	
McBSP	Multi Channel Buffered Serial Port	
MCH	MicroTCA Carrier Hub	
MTCA or MicroTCA	Micro Telecommunication Computing Architecture	
MMC	Module Management Controller	
PICMG®	PCI Industrial Computer Manufacturers Group	
SDRAM	Synchronous Dynamic Random Access Memory	
SERDES	Serializer-Deserializer	
SGMII	Serial Gigabit Media Independent Interface	
SRIO	Serial RapidIO	
UART	Universal Asynchronous Receiver/Transmitter	
USB	Universal Serial Bus	
XDS560v2	Texas Instruments' System Trace Emulator	

Table of Contents

1. (OVERVIEW	11
1.1	KEY FEATURES	11
1.2	FUNCTIONAL OVERVIEW	12
1.3	BASIC OPERATION	14
1.4	BOOT MODE AND BOOT CONFIGURATION SWITCH SETTING	15
1.5	POWER SUPPLY	16
2 . I	INTRODUCTION TO THE C6472 EVM BOARD	17
2.1	MEMORY MAP	17
2.2	EVM BOOT MODE AND BOOT CONFIGURATION SWITCH SETTINGS	18
2.3	CLOCK CONFIGURATION OPTIONS	18
2.4	BOARD REVISION ID	19
2.5	JTAG - EMULATION OVERVIEW	20
2.5.1	JTAG – TMDSEVM6472	20
2.5.2	JTAG – TMDSEVM6472LE	21
2.5.2.	.1 XDS560V2 MEZZANINE EMULATOR BOOTING	21
2.6	CLOCK DOMAINS	22
2.7	I2C BOOT EEPROM	22
2.8	FPGA	23
2.9	GIGABIT ETHERNET PHY	24
2.10		25
2.11	SERIAL RAPIDIO (SRIO) INTERFACE	25
2.12	UART INTERFACE	26
2.13	MODULE MANAGEMENT CONTROLLER (MMC) FOR IPMI	27
2.14	HPI	27
3. I	FPGA FUNCTIONAL SPECIFICATION	28
3.1	FPGA MODES	28
3.2	FPGA – DSP COMMUNICATION SIGNALS	29
3.3	FPGA MEMORY MAP	30
3.4	FPGA CONFIGURATION REGISTERS	31
3.5	FPGA-DSP COMMUNICATION PROTOCOL IN FPGA NORMAL MODE	32
3.6	SEQUENCE OF OPERATION	33
3.6.1	BOOT SEQUENCE – POWER-ON (COLD) RESET	33

Technical Reference Manual

SPRUFU2 - Revised March 2011

3.6.2	BOOT SEQUENCE – WARM RESET	33
4. E	VM BOARD PHYSICAL SPECIFICATIONS	34
4.1	BOARD LAYOUT	34
4.2	CONNECTOR INDEX	35
4.2.1	J1, HPI DC CONNECTOR	36
4.2.2	J2, AMC EDGE CONNECTOR	37
4.2.3	J3, ETHERNET CONNECTOR	39
4.2.4	J4, UART 3-PIN CONNECTOR	39
4.2.5	J5, MSP430 JTAG CONNECTOR	40
4.2.6	J6, POWER INPUT JACK CONNECTOR	40
4.2.7	J7, MINI-USB CONNECTOR	40
4.2.8	J8, DSP JTAG CONNECTOR	41
4.2.9	J9, FPGA JTAG CONNECTOR	42
4.2.10	J10, UART PATH SELECT CONNECTOR	42
4.2.11	J1, MINI-AB USB CONNECTOR – IN TMDSEVM6472LE ONLY	42
4.3	SWITCHES	43
4.3.1	SW1, DSP CONFIGURATIONS	43
4.3.2	SW2, DSP BOOT MODE	44
4.3.3	SW3, USER SWITCH	44
4.3.4	SW4, WARM RESET	44
4.3.5	SW5, COLD RESET	45
4.4	TEST POINTS	46
4.5	SYSTEM LEDS	47

List of Figures

FIGURE 1.1: BLOCK DIAGRAM OF TMDSEVM6472	12
FIGURE 1.2: BLOCK DIAGRAM OF TMDSEVM6472LE	13
FIGURE 1.3: TMDSEVM6472	14
FIGURE 1.4: TMDSEVM6472LE	15
FIGURE 2.1: EVM BOARD REVISION	
FIGURE 2.2: TMDSEVM6472 JTAG EMULATION	
FIGURE 2.3: TMDSEVM6472LE JTAG EMULATION	
FIGURE 2.4: C6472 EVM CLOCK DOMAINS	22
FIGURE 2.5: C6472 EVM FPGA CONNECTIONS	23
FIGURE 2.6: C6472 EVM ETHERNET PHY ROUTING	
FIGURE 2.7: C6472 EVM TSIP CONNECTIONS	
FIGURE 2.8: C6472 EVM SRIO PORT CONNECTIONS	
FIGURE 2.9: C6472 EVM UART CONNECTIONS	
FIGURE 2.10: C6472 EVM MMC CONNECTIONS FOR IPMI	
PROCEDURE 3-1: ADDRESS CYCLE INITIATION BY DSP	
PROCEDURE 3-2: WRITE CYCLE INITIATION BY DSP	
PROCEDURE 3.5-3: READ CYCLE INITIATION BY DSP	
Procedure 3-1: Power on Reset	
Procedure 3-1: Warm Reset	
FIGURE 4.1: C6472 EVM BOARD LAYOUT – TOP VIEW	
FIGURE 4.2: C6472 EVM BOARD LAYOUT – BOTTOM VIEW	
FIGURE 4.3: SW1 DEFAULT SETTINGS	
FIGURE 4.4: SW2 DEFAULT SETTINGS	
FIGURE 4.5: SW3 DEFAULT SETTINGS	
FIGURE 4.6: BOARD TEST POINTS ^[5]	
FIGURE 4.7: THE C6472 EVM BOARD LEDS	
FIGURE 4.8: TMDSEVM6472LE BOARD ADDITIONAL LEDS	48

List of Tables

TABLE 1: TMS320C6472 MEMORY MAP	
TABLE 2: CLOCK CONFIGURATIONS	
TABLE 3: PCA/PCB REVISION DESCRIPTION	19
TABLE 4: GPIO PIN MAPPING IN NORMAL MODE	
TABLE 5: GPIO PIN MAPPING IN NAND PASS THROUGH MODE	
TABLE 6: FPGA MEMORY MAP	
TABLE 7: FPGA CONFIGURATION REGISTERS SET	
TABLE 8: TMS320C6472 EVM BOARD CONNECTORS	
TABLE 9: HPI DC CONNECTOR	36
TABLE 10: AMC EDGE CONNECTOR	
TABLE 11: ETHERNET CONNECTOR PIN OUT	
TABLE 12: UART CONNECTOR PIN OUT	
TABLE 13: MSP430 JTAG CONNECTOR PIN OUT	
TABLE 14: MINI-B USB CONNECTOR PIN OUT	
TABLE 15: DSP JTAG CONNECTOR PIN OUT	
TABLE 16: FPGA JTAG CONNECTOR PIN OUT	
TABLE 17: UART PATH SELECT CONNECTOR PIN OUT	
TABLE 18: MINI-AB USB CONNECTOR PIN OUT	

Technical Reference Manual

TABLE 19: C6472 EVM BOARD SWITCHES	43
TABLE 20: SW1, DSP CONFIGURATION SWITCH	43
TABLE 21: SW2, DSP BOOT MODE SELECTION SWITCH	
TABLE 22: C6472 EVM BOARD TEST POINTS	46
TABLE 23: THE C6472 EVM EVM BOARD LEDS	
TABLE 24: TMDSEVM6472LE BOARD ADDITIONAL LEDS	

1. Overview

This chapter provides an overview of the C6472 EVM along with the key features and block diagram.

- 1.1 Key Features
- 1.2 Functional Overview
- 1.3 Basic Operation
- 1.4 Configuration Switch Settings
- 1.5 Power Supply

1.1 Key Features

The C6472 EVM is a high performance, standalone development platform that enables users to evaluate and develop applications for the Texas Instruments' TMS320C6472 multicore Digital Signal Processor (DSP). The Evaluation Module (EVM) also serves as a hardware reference design platform for the TMS320C6472 DSP. The EVM's form-factor is equivalent to a single-width AMC (PICMG's AdvancedTCA Mezzanine Card) module.

TMDSEVM6472 comes with an onboard XDS100 emulator. TMDSEVM6472LE comes with an integrated, high speed, system trace capable XDS560v2 Mezzanine Emulator.

Schematics, logic equations and application notes are available to ease the hardware development process and reduce time to market.

The key features of the C6472 EVM are:

- EVM contains Texas Instruments' next-generation six core, fixed point DSP TMS320C6472. C6472 DSP contains six on-chip C64x+ Megamodules.
- 256 Mbytes of DDR2 Memory
- 128 Mbytes of NAND Flash
- 2 Gigabit Ethernet ports supporting 10/100/1000 Mbps data-rate
- 170 pin B+ style AMC Interface
- I2C EEPROM for booting
- 2 user LEDs and 2 user switches
- 8 I2C controlled LEDs
- RS232 Serial port on 3-Pin header
- Host port interface (HPI) connector
- On Board FPGA (Actel's ProASIC 3) for DSP boot-strapping and NAND Flash interface
- On-Board XDS100 type Emulation using USB 2.0 interface^[1]
- TI 60-Pin JTAG header to support External Emulator^[1]
- High Speed plugged XDS560v2 Mezzanine Emulator^[2]
- MMC interface for IPMI
- AMC like form factor

Note: [1] - Available in TMDSEVM6472 only [2] - Available in TMDSEVM6472LE only

1.2 Functional Overview

The C6472 EVM is a single width AMC module with Texas Instruments' six core C6472 DSP, working as a bridge between circuit switched network (telecom serial interface ports) and packet switched network (Ethernet). Alternatively, it can be used for voice or video transcoding solely through the Ethernet interfaces.

The functional block diagram of TMDSEVM6472 is shown in figure 1.1:

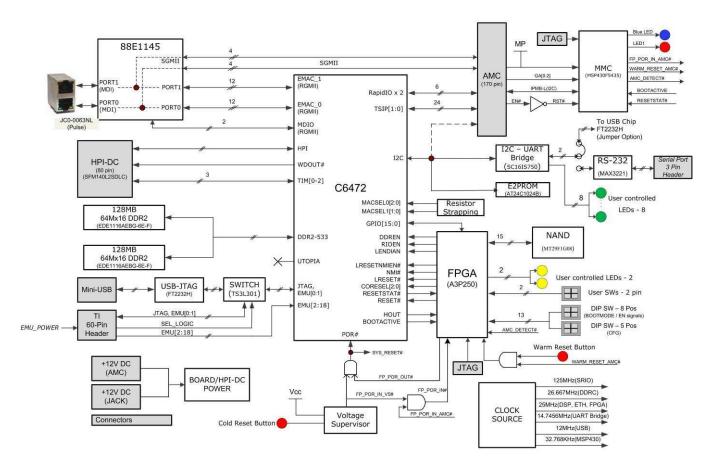
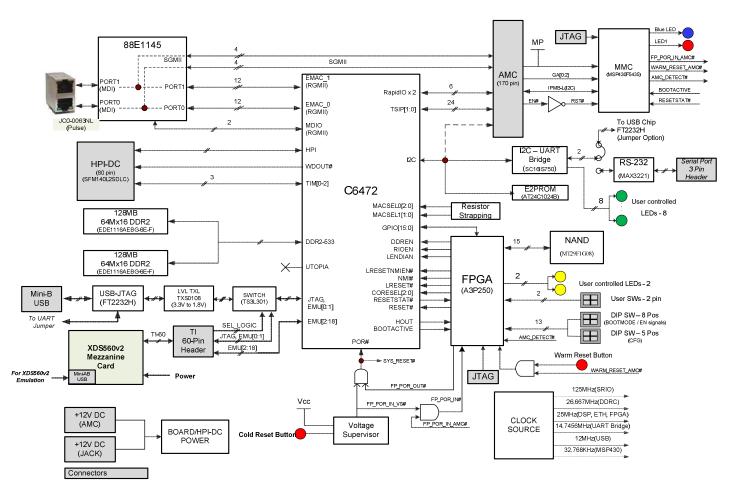



Figure 1.1: Block Diagram of TMDSEVM6472

The functional block diagram of TMDSEVM6472LE is shown in figure 1.2:

Figure 1.2: Block Diagram of TMDSEVM6472LE

1.3 Basic Operation

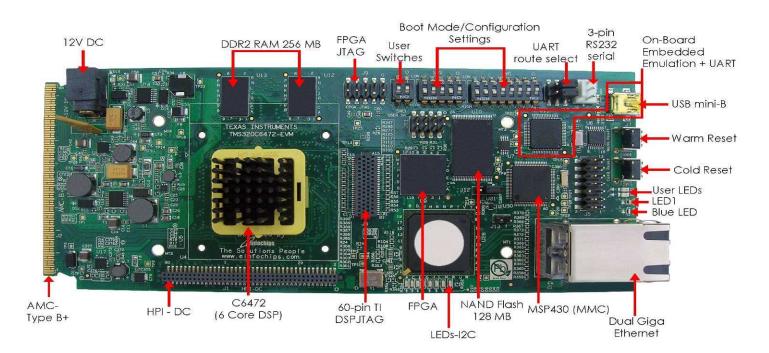
The C6472 EVM platform is designed to work with TI's Code Composer Studio version 4 (CCSv4) development environment and is shipped with the latest version with all necessary emulation drivers. For TMDSEVM6472, CCSv4 interfaces with the board via on-board emulation circuitry using the USB cable supplied along with this EVM or through external emulator. For TMDSEVM6472LE, CCSv4 interfaces with the board only via XDS560v2 System Trace emulator using the USB cable supplied.

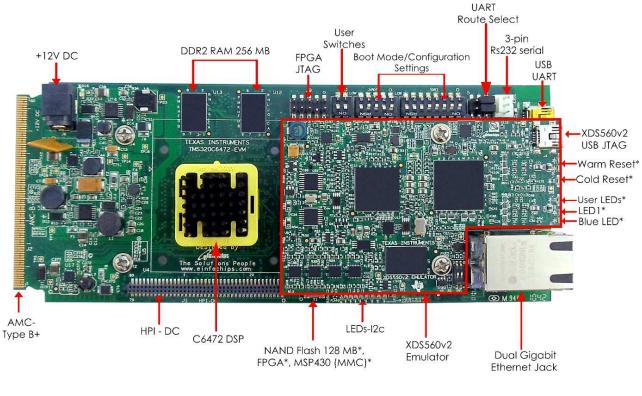
To start operating the board, follow instructions in the Quick Setup Guide. Follow the instruction in <u>BIOS MCSDK</u> <u>Getting Started Guide</u> to install all the necessary development tools, drivers and documentation.

After the installation is completed, follow the steps below to run Code Composer Studio.

- 1. Power ON the board using power brick adaptor (12V/2.5A) supplied along with this EVM or insert this EVM board into standard AMC carrier back-plane.
- 2. Connect USB cable from host PC to EVM board for TMDSEVM6472 or to XDS560v2 Mezzanine emulator for TMDSEVM6472LE.
- 3. Launch Code Composer Studio from host PC by double clicking on its icon at PC desktop.

Detailed information about the EVM including examples and reference material is available in the DVD available with this package.




Figure 1.3: TMDSEVM6472

Technical Reference Manual

SPRUFU2 - Revised March 2011

(*Note: Beneath the emulator)

1.4 Boot Mode and Boot Configuration Switch Setting

The C6472 EVM has 15 sliding DIP switches (Board Ref. SW1, SW2 and SW3) to determine boot mode, boot configuration, endian mode, system clock out enable and DDR/SRIO interface enable options at every reset of the DSP.

1.5 Power Supply

The C6472 EVM can be powered from a single +12V / 2.5A DC (30W) external power supply connected to the DC power jack (J6). Internally, +12V input is converted into desired voltage levels such as, +5V, +3.3V, +1.8V, +1.5V and +1.2V using local DC-DC converters.

- +1.2V is used for DSP Core (CVDDx) and Ethernet PHY transceiver.
- +1.5V is used for FPGA core.
- +1.8V is used for DDR2 / Ethernet RGMII interface.
- +3.3V is used for DSP GPIOs.
- The DC power jack connector is a 2.5mm barrel-type plug with center-tip as positive polarity.

The C6472 EVM can also draw power from the AMC edge connector (J2). If the board is inserted into an AMC Carrier or AMC-compatible chassis, the external +12V supply from DC jack (J6) is not required and should not be connected in that case.

2. Introduction to the C6472 EVM Board

Chapter two provides an introduction and interface details for the C6472 EVM board. It contains:

- 2.1 Memory Map
- 2.2 EVM Boot mode and Boot configuration switch settings
- 2.3 Clock Configuration
- 2.4 Board Revision ID
- 2.5 JTAG Emulation Overview
- 2.6 Clock Domains
- 2.7 I2C boot EEPROM
- 2.8 FPGA
- 2.9 Gigabit Ethernet PHY
- 2.10 TSIP Interfaces
- 2.11 Serial RapidIO(SRIO) Interfaces
- 2.12 UART Interfaces
- 2.13 Module Management Controller for IPMI
- 2.14 HPI

2.1 Memory Map

The memory map of the TMS320C6472 device is as shown in Table 1. It provides a combined view of both local and global addresses. The C64x+ Megamodule local memories have both local and global addresses. The Megamodule registers have only local addresses which can be resolved within the Megamodule and cannot be accessed outside Megamodule. All other addresses listed in this table are global addresses which can be accessed from any bus master including all six C64x+ Megamodules, transfer controllers within the EDMA3 block and any peripheral that can master the bus.

Six Address Range	Memory Block Description
0x 00000000 - 001FFFFF	Reserved
0x 00200000 - 002BFFFF	SL2 RAM
0x 002C0000 - 007FFFFF	Reserved
0x 00800000 - 017FFFF	Local L1 / L2 SRAM, Reserved
0x 01800000 - 01BFFFFF	C64x+ Megamodule Registers
0x 01C00000 - 0FFFFFF	Control Registers, Reserved
0x 10000000 - 1FFFFFF	Global Memory Map, Reserved
0x 20000000 - 77FFFFF	Reserved
0x 78000000 - DFFFFFFF	DDR2 EMIF Config, Reserved
0x E0000000 - FFFFFFF	CE0-CE1 DDR2 SDRAM
0x 20000000 - 77FFFFF 0x 78000000 - DFFFFFFF	Reserved DDR2 EMIF Config, Reserved

Table 1: TMS320C6472 Memory Map

2.2 EVM Boot mode and Boot Configuration Switch Settings

The C6472 EVM has two configuration switches SW1 and SW2. Whenever user presses a Cold or Warm Reset button or if the board is power-cycled, an on-board FPGA latches the state of configuration signals from SW1 and SW2 and presents them to the DSP during the reset period.

SW1 determines general DSP configuration, little or big endian mode, DDR interface enable and SRIO interface enable. SW2 determines DSP boot mode and system clock out enable options. Please refer to <u>section 4.3</u> of this document for default switch setting and details of each switch.

2.3 Clock Configuration Options

Table below shows clock configuration information of the EVM.

Clock	Frequency	Description
CLKIN1	25.000MHz	CPU core clock input for PLL1, multiplier normally x20 for 500MHz, x25 for 625MHz and x28 for 700MHz
CLKIN2	25.000MHz	EMAC clock input for PLL2, multiplier fixed at x20
CLKIN3	26.667MHz	DDR clock input for PLL3, multiplier fixed at x20 for DDR2-533 operation

Table 2: Clock Configurations

2.4 Board Revision ID

Board PCB (Printed Circuit Board) and PCA (Printed Circuit Assembly) revision are located below RJ-45 Jack in bottom silk, as shown in Figure 2.1. Table 3 describes the PCA/PCB revisions.

PCB REV: 17-00065-05 PCA REV: 18-00065-05

Figure 2.1: EVM Board Revision

Table 3: PCA/PCB revision description

PCA REV	PCB REV	Description	
18-00065-01	17-00065-01	Internal - Proto boards (Initial engineering samples)	
18-00065-02	17-00065-02	Production build – Released in October-2009 - Modified TSIP connections to AMC edge connector - Addition of Reset control from AMC carrier	
18-00065-03	17-00065-03	Internal - Proto boards with Ethernet PHY changed to 88E1145 for SGMII feature addition	
18-00065-04	17-00065-04	Production build – Released in March-2010 - Differential AMC Telecom clock input supported	
18-00065-05	17-00065-05	Production build – Released in July-2010 - MMC and IPMI supported using TI MSP430 microcontroller	
18-00065-06	17-00065-06	Production build – Released in December-2010 - TCLKC/D used for Frame Sync	

Note: Last two digits represent major PCB / PCA revision number.

2.5 JTAG - Emulation Overview

2.5.1 JTAG – TMDSEVM6472

The EVM supports two different types of DSP Emulation - "USB mini-B" and "60-pin TI JTAG-DSP".

USB emulation is supported through an on-board, optimized XDS100-class embedded emulation circuit. Onboard (embedded) USB emulation is accessible through the USB mini-B connector (J7); hence any external emulator is not necessary to connect EVM with Code Composer Studio. User can connect CCS with target DSP in EVM with USB cable supplied along with this board.

TI 60-pin JTAG header (J8) is provided on-board to allow user to connect to external emulator for high speed real-time emulation. External/mezzanine emulators as XDS560v2 emulators and standard XDS510 or XDS560 emulators with 60 to 20-pin or 60 to 14-pin adapter boards from TI and 3rd-party vendors are supported. Please refer to the documentation supplied with your emulator for connection assistance.

Both emulator configurations are enabled by default and there is dynamic switching between them. On-board embedded JTAG emulator is default connection to DSP, however when external emulator is connected to EVM, board circuitry automatically switches to give access to external emulator. When both are connected at the same time, external emulator is given priority and on-board emulator is disconnected from DSP.

The interface between DSP, on-board and external emulator is shown in figure below:

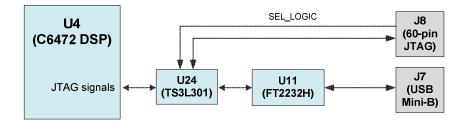


Figure 2.2: TMDSEVM6472 JTAG emulation

2.5.2 JTAG – TMDSEVM6472LE

In TMDSEVM6472LE, high speed real time emulation can be performed without needing an external emulator as it has an integrated, system trace capable XDS560v2 Mezzanine Emulator mounted on its TI 60-pin JTAG header (J3). User can connect the EVM to CCS by connecting the USB port of XDS560 Mezzanine emulator to PC using USB cable supplied with an EVM.

As high speed XDS560v2 Emulator is already mounted on TI 60-pin JTAG header of the EVM, the low speed XDS100 emulation is no longer required and not available to user.

It is important to note that for XDS560v2 emulation, the USB cable needs to be connected to the mini-AB connector (J1) on XDS560v2 Mezzanine Emulator and not to mini-B connector (J7) on the main board. For TMDSEVM6472LE, the mini-B connector (J7) on the main board can be used to access UART-over-USB; please refer to section 2.12 of this document for more details.

The interface between DSP and XDS560v2 Mezzanine Emulator is shown in figure 2.3:

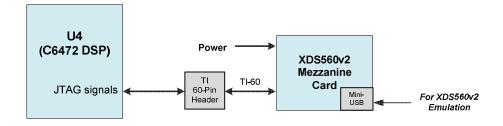


Figure 2.3: TMDSEVM6472LE JTAG emulation

2.5.2.1 XDS560v2 Mezzanine Emulator Booting

When TMDSEVM6472LE is powered ON, the XDS560v2 Mezzanine Emulator starts booting. It takes approximately half minute to boot-up. The successful booting of XDS560v2 Mezzanine Emulator is indicated by following LED sequence:

- Green LED (D3) turns ON
- Yellow LED (D2) and Red LED (D1) turns ON
- Green LED (D3) blinks and turns OFF

After the completion of booting XDS560v2 mezzanine emulator is ready to interface with CCS. Once CCS is connected to the target DSP Green LED D4 turns ON.

The boot failure is indicated by simultaneous blinking of Red LED (D1), Yellow LED (D2) and Green LED (D3). In this case CCS can't be connected to XDS560v2 mezzanine emulator. The boot failure can happen when mezzanine emulator is attempted to mount over a non-compatible base EVM.

2.6 Clock Domains

The EVM incorporates variety of clocks to the TMS320C6472 device which are configured automatically during the power up configuration sequence. The figure below illustrates the clocking for the system in EVM module.

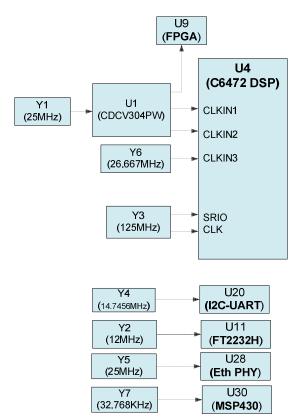


Figure 2.4: C6472 EVM Clock Domains

2.7 I2C Boot EEPROM

The I2C EEPROM address 0x50 contains Power on Self Test (POST) program and I2C address 0x51 contains second level boot-loader program. The second level boot-loader reads the Out-Of-Box Demo program from the NAND FLASH memory. The I2C address 0x51 also contains two unique MAC addresses reserved for your C6472 EVM. These MAC addresses are flashed into the EEPROM at address offset of 0xF400 to 0xF40B.

2.8 FPGA

The FPGA (Actel #A3P250-FGG144) interface provides reset control circuitry and latching of device configuration pins. The logic level of these pins is latched at reset to determine the device configuration. These switch-controlled inputs are driven to the DSP at reset time.

FPGA supports two modes; Normal mode and NAND pass through mode. These modes are mutually exclusive modes. In Normal mode, FPGA provides access to FPGA registers through DSP's GPIO pins. FPGA supports 2 user LEDs and 3 User Switches through control registers.

In NAND pass through mode, DSP GPIOs are directly assigned to NAND pins. NAND access is only possible in NAND pass through mode. Details of these are provided in chapter 3 <u>FPGA Functional Specification</u>.

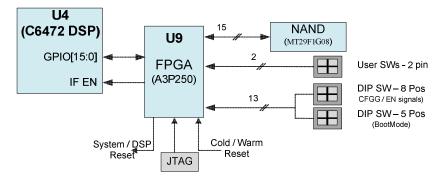
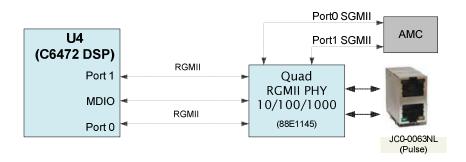


Figure 2.5: C6472 EVM FPGA Connections



2.9 Gigabit Ethernet PHY

The C6472 EVM incorporates a quad-port Marvell 88E1145 Ethernet PHY transceiver. The DSP can configure PHY (U28) over MDIO interface. Dual (stacked) port RJ45 connector (J3) allows Gigabit Ethernet access to the EMAC0 and EMAC1 ports of the DSP. Both EMAC0 (lower port) and EMAC1 (upper port) on the DSP are configured to use RGMII interface with their common MDIO interface. The Ethernet PHY has the ability to convert RGMII EMAC to SGMII EMAC; the converted SGMII EMAC ports are routed to the AMC connector.

The C6472 EVM is interfaced with PHY as shown in figure below.

Figure 2.6: C6472 EVM Ethernet PHY Routing

At Power On, Port0 of Ethernet PHY will be configured as "RGMII to SGMII" mode and Port1 will configured as "RGMII to Copper" mode. This will be ensured by hardware strapping of Ethernet PHY. After DSP boot-up, user has the flexibility to change above configuration by re-configuring the drivers. The POST program when executed, will determine if the board is installed in an AMC connector and accordingly it will configure both EMAC ports to AMC connector or to RJ45 connector.

2.10 TSIP Interface

TMS320C6472 has three independent Telecom Serial Interface Ports (TSIP[0:2]). TSIP is a multi-link serial interface consisting of a maximum of 8 transmit data signals (or links), 8 receive data signals (or links), two frame sync input signals, and two serial clock inputs. The TSIP module in DSP offers support for a maximum of 1024 timeslots for transmit and receive. Typically, 672 timeslots for transmit and receive are utilized on these links. TSIP module can be configured to use frame sync signals and serial clocks as redundant sources for all transmit and receive data signals, or one frame sync and one serial clock can be configured for transmit and the other frame sync and clock can be configured for receive.

In C6472 EVM, two TSIP ports (TSIP0 and TSIP1) are routed to AMC edge connector. Four active links from each of TSIP0 and TSIP1 ports are routed to AMC edge connector. Below is the interface diagram for TSIP signals in The C6472 EVM.

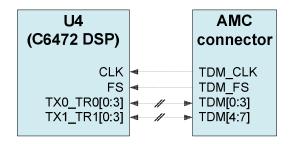
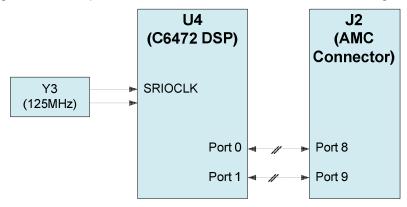



Figure 2.7: C6472 EVM TSIP Connections

2.11 Serial RapidIO (SRIO) Interface

TMS320C6472 supports high speed SERDES based Serial RapidIO (SRIO) interface. There are two independent x1 SRIO interfaces: Lane 0 and Lane 1 available on C6472. All SRIO ports are routed to AMC edge connector on board as per the PICMG AMC.0 R2.0 specifications; SRIO ports 1-2 are routed to AMC ports 8-9 respectively. Below figure shows RapidIO connections between the DSP and AMC edge connector.

2.12 UART Interface

A serial port is provided for debugging purpose using an I2C-UART bridge. This serial port can be accessed either through USB connector (J7) or through 3-pin serial port header (J4). The selection can be made through UART Route Select shunt J10 as follows:

- UART over USB Connector (Default): Shunt installed over J10.3-J10.1 and J10.4 -J10.2
- UART over 3-Pin Header J5 Shunt installed over J10.3-J10.5 and J10.4 -J10.6

A 3-pin to 9-pin DTE (Data Terminal Equipment) serial cable is provided in the EVM kit to connect the J4 serial port to PC. An additional UART port is also routed from I2C-UART Bridge to 80 pin header J1.

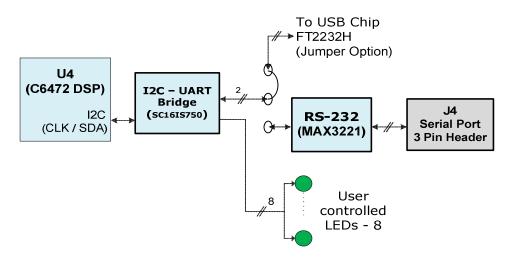


Figure 2.9: C6472 EVM UART Connections

2.13 Module Management Controller (MMC) for IPMI

The C6472 EVM supports limited set of Intelligent Platform Management Interface (IPMI) commands and a Module Management Controller (MMC) in AMC form-factor design.

The MMC will communicate with MicroTCA Carrier Hub (MCH) over IPMB (Intelligent Platform Management Bus) when inserted into an AMC slot of a PICMG® MTCA.0 Micro Telecommunications Computing Architecture (MicroTCA.0) specification compliant chassis. The primary purpose of the MMC is to provide necessary information to MCH, to enable the payload power to the C6472 EVM when it is inserted into the µTCA chassis.

The EVM also support a Blue LED and LED1 on the front panel as specified in PICMG® AMC.0 R2.0 Advanced Mezzanine Card Base Specification. Both of these LEDs will blink as part of initialization process when the MMC will receive management power.

Blue LED – Blue LED will turn ON when μ TCA chassis is powered ON and an EVM is inserted into it. The blue LED will turn OFF when payload power is enabled to the EVM by the MCH.

LED1 – Red colored LED1 will normally be OFF. It will turn ON to provide basic feedback about failures and out of service.

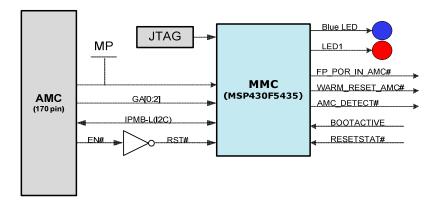


Figure 2.10: C6472 EVM MMC Connections for IPMI

2.14 HPI

The C6472 EVM has an HPI interface, which can be accessed by an external host controller. This HPI interface is available on the HPI Daughter Card (DC) connector J1 of the EVM.

3. FPGA Functional Specification

This chapter contains:

- 3.1 FPGA modes
- 3.2 FPGA DSP communication signals
- 3.3 FPGA memory map
- 3.4 FPGA configuration registers
- 3.5 FPGA-DSP communication protocol in FPGA Normal mode
- 3.6 Sequence of Operation

3.1 FPGA modes

The FPGA can be configured in two modes. They are:

- Normal mode
- NAND pass through mode

After the completion of booting, DSP GPIO 14 is used to select between the Normal mode and the NAND Pass through mode.

If DSP GPIO 14 is 1'b0, then normal mode is selected. FPGA registers can be accessed in normal mode of operation only.

If DSP GPIO 14 is 1'b1, then Pass-Through mode is selected. In this mode DSP GPIO pins are directly mapped to the pins of the NAND Flash memory except Write-Protect Pin. The Write-Protect pin is not mapped due to unavailability of a GPIO pin in NAND pass through mode. The Write-Protect Pin of NAND Flash is mapped to the bit [4] of NAND_CWR_REGH FPGA register. The user application will require to disable write protect using the FPGA normal mode and then switch to NAND pass through mode to write to the NAND flash.

3.2 FPGA – DSP Communication Signals

The GPIO signals used for communication between FPGA and DSP when FPGA is in Normal mode are described in Table 4. The GP[12:13] are not used.

GPIO#	Function	Direction	Description		
GP[7:0]	Data	Bidirectional	This is 8-bit wide bidirectional bus, shared for address and data. Whether the signals currently carry address, read data, or write data is defined by the Command signals.		
GP[9:8]	Command	Input	These bits define the bus operation for the current strobe period. 00 - NOP 01 - address cycle 10 - read cycle 11 - write cycle		
GP10	Strobe	Input	Input This signal is used to synchronize the bus activity between the DSP and FPGA. The DSP is always master of the bus timing.		
GP11	Ready	Output A low value on this pins during a read or write cycle will cause DSP to extend the cycle until the signal goes high. This signa not monitored for address and NOP cycles			
GP14	FPGA mode select	Input	This signal selects the mode of communication with the NAND Flash Memory. If it is 1'b1, then pass-through mode is enabled whereby the DSP GPIO pins are directly mapped to the pins of NAND Flash Memory. If it is 1'b0, then Normal Mode of operation is selected in which FPGA Configuration Registers will be accessed.		
GP 15	I2c-UART interrupt	Output	This signal directly follows the IRQ line from the I2C UART chip		

Table 4: GPIO pin	mapping	in Normal	mode
-------------------	---------	-----------	------

The GPIO signals used for communication between FPGA and DSP when FPGA is used in NAND pass through mode are described in Table 5.

GPIO#	Function	Direction	Description	
GP[7:0]	Data	Bidirectional	This 8-bit data bus is mapped to the 8-bit data bus of NAND Flash Memory.	
GP[9:8]	Command	Input	GP[8] pin is mapped to the Command Latch Enable (CLE) pin of NAND Flash Memory.GP[9] pin is mapped to the Address Latch Enable (ALE) pin c NAND Flash Memory.	
GP10	Write enable	Input	This signal is mapped to the Write Enable (nWE) pin of the NAND Flash Memory.	
GP11	Ready	Output	This signal is mapped to the Ready/Busy (RB) pin of the NAND Flash Memory.	
GP12	Read enable	Input	This signal is mapped to the Read Enable (nRE) pin of the NAND Flash Memory.	
GP13	Chip enable	Input	This signal is mapped to the Chip Enable (nCE) pin of the NAND Flash Memory.	
GP14	FPGA mode select	Input	This signal selects the mode of communication with the NAND Flash Memory. If it is 1'b1, then pass-through mode is enabled whereby the DSP GPIO pins are directly mapped to the pins of NAND Flash Memory. If it is 1'b0, then Normal Mode of operation is selected in which FPGA Configuration Registers will be accessed.	
GP 15	I2c-UART interrupt	Output	This signal directly follows the IRQ line from the I2C UART chip	

Table 5: GPIO pin mapping in NAND pass through mode

3.3 FPGA Memory Map

Table 6 describes the memory map of FPGA when FPGA is configured in Normal mode of operation.

Table 6:	FPGA	Memory	Мар
----------	------	--------	-----

GPIO[7:0]	Memory		
0x00 – 0x22	Configuration Memory Space		

3.4 FPGA Configuration Registers

The following table enlists the FPGA configuration register and its description:

Read / Default Data						
Name	Address	Write	value in HEX	bits	Description	
Reserved	0x00 - 0x05	-	-	7:0	Reserved for future use.	
BITFILE_VER_REG	0x06	Read	0x01	7:0	Shows the BITFILE version	
RTL_VER_REG	0x07	Read	0x01	7:0	Shows the RTL version	
-	0x08	-	0x00	7:0	Reserved for future use.	
CONTROL_REGH	0x09	Read / Write	0x70	3:0	Reserved for future use.	
					Write Protect Bit	
					1 => Disable	
				4	0 => Enable	
				-	This bit is mapped to the Write-Protect pin of	
					NAND Flash Memory if the Pass-Through Mode	
					is enabled.	
					User LED 0 Data. The bit value that is written at	
				this location is driven on the User LED 0, if the		
			5	User LED is enabled via		
					NAND_CWR_REGH[7].	
					User LED 1 Data. The bit value that is written at	
					this location is driven on the User LED 1, if the	
			6		User LED is enabled via	
					NAND_CWR_REGH[7].	
					User LED's Enable/Disable	
					0 => FPGA drives 1'b1 on User LED's	
					(Disable).	
				7	1 => Data present in the	
					NAND CWR REGH[6:5] is	
					driven on the User LED's	
					(Enable).	
Reserved	0x0A –			7:0	Posonyod for future use (PELI)	
	0x21	-	-		Reserved for future use. (RFU)	
USER_SW_REG	0x22	Read	0x00	0	tievm_user_sw1_i	
				1	tievm_user_sw2_i	
				2	AMC detect signal	
				4:3	Reserved for future use	
				7:5	tievm_board_ver_i[2:0]	

Table 7: FPGA Configuration Registers Set

3.5 FPGA-DSP Communication Protocol in FPGA Normal Mode

At system reset FPGA becomes master and DSP becomes slave. The FPGA will provide the boot parameters to DSP. Once booting is done the FPGA will become slave and DSP will become master, at this point the below mentioned protocol is implemented.

The 16 bit bus from DSP GPIO to FPGA is divided in

- 8-bit bi-directional bus which is shared between data and address.
- 4-bit for control and handshaking signals.
- 2-bits are not used.

DSP to FPGA has strobe based asynchronous communication.

After the DSP reset and boot sequence the GPIO pins will transition from their configuration role to their role in the GPIO Bus.

The DSP is the master of the GPIO BUS. The DSP will initiate bus cycles, define how long they last and when they will complete. The FPGA can extend a read or write cycle if needed.

The normal write sequence is for the DSP to issue an address cycle followed by a write cycle. The normal read sequence is for the DSP to issue an address cycles followed by a read cycle. If a read or write cycle is not preceded by an address cycle, the address of the last cycle is used. This allows repeated reads or writes to a given register.

To initiate an address cycle the DSP will:

- 1. Set the value of cmd
- 2. Set the direction of data_io as output from DSP
- 3. Set the address value on data_io
- 4. Set stb_o active
- 5. Wait a minimum of 50 ns
- 6. Set stb_o inactive
- 7. Wait a minimum of 50 ns before the next cycle starts

Procedure 3-1: Address cycle Initiation by DSP

To initiate a write cycle the DSP will:

- 1. Set the value of cmd
- 2. Set the direction of data_io as output from DSP
- 3. Set the write data value on data_io
- 4. Set stb_o active
- 5. Wait a minimum of 50 ns
- 6. If rdy_o is low wait until it is high
- 7. Set stb_o inactive
- 8. Wait a minimum of 50 ns before the next cycle starts

Procedure 3-2: Write cycle Initiation by DSP

To initiate a read cycle the DSP will:

- 1. Set the value of cmd
- 2. Set the direction of data_io as input to DSP
- 3. Set stb_o active
- 4. Wait a minimum of 50 ns
- 5. If rdy_o is low wait until it is high
- 6. read data_io and store as the read cycle result
- 7. Set stb_o inactive
- 8. Wait a minimum of 50 ns before the next cycle starts

Procedure 3.5-3: Read Cycle Initiation by DSP

The FPGA will only enable its data_io drive when cmd == READ and stb_o is active. The FPGA must ensure that its driver is off no later than 40 ns after stb_o goes inactive.

The bus may idle after any of the above cycles; an explicit NOP cycle is not needed

3.6 Sequence of Operation

Following section provides details of FPGA sequence of operation.

3.6.1 Boot Sequence – Power-On (Cold) Reset

- 1. On system reset (power-on reset), available through the global FPGA system reset pin, assert POR# pin active low
- 2. Wait for the FPGA internal PLL to stabilize
- 1. Once the PLL is locked, user defined configuration pins and fixed configuration pins are latched by FPGA and pin status are provided to C6472 device configuration pins. For device configuration settings please refer to sections <u>4.3.1 DSP Configurations</u> and <u>4.3.2 DSP boot mode</u>.
- 3. Wait for 20 μ S. As the frequency of operation of the FPGA is 40MHz, the internal counters would count 800 clock cycles
- 4. De-assert POR#
- 5. Wait for RESETSTAT# signal from DSP to go from low to high. GPIO lines to GIC modules would be put in tri-state condition
- 6. Indicate GIC module that the boot mode is over

Procedure 3-1: Power on Reset

3.6.2 Boot Sequence – Warm Reset

- 2. On warm reset, available through the push button switches on board, assert RESET# pin active low
- 3. Wait for the FPGA internal PLL to stabilize
- Once the PLL is locked, user defined configuration pins and fixed configuration pins are latched by FPGA and pin status are provided to C6472 device configuration pins. For device configuration settings please refer to sections <u>4.3.1 DSP Configurations</u> and <u>4.3.2 DSP boot mode</u>.
- Wait for 20 µS. As the frequency of operation of the FPGA is 40MHz, the internal counters would count 800 clock cycles
- 6. De-assert RESET#
- 7. Wait for RESETSTAT# signal from DSP to go from low to high. GPIO lines to GIC modules would be put in tri-state condition
- 8. Indicate GIC module that the boot mode is over

Procedure 3-1: Warm Reset

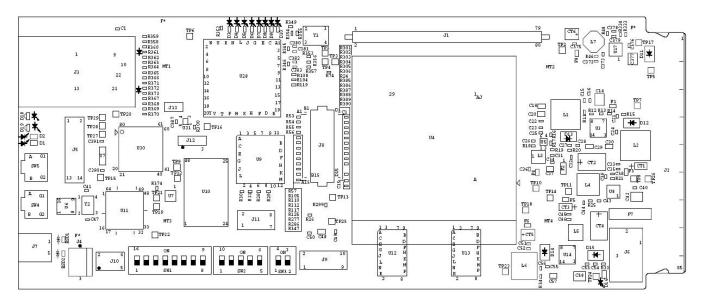
4. EVM Board Physical Specifications

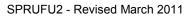
This chapter describes the physical layout of the C6472 EVM board and its connectors, switches and test points. It contains:

- 4.1. Board Layout
- 4.2. Connector Index
- 4.3. Switches
- 4.4. Test Points
- 4.5. System LEDs

4.1 Board Layout

The C6472 EVM Board is a 7.11" x 2.89" (180.6 x 73.5 mm2) multi-layer board which is powered through connector J6. Figure 3-1 and 3-2 shows the layout of the C6472 EVM Board.




Figure 4.1: C6472 EVM Board layout – TOP view

Technical Reference Manual

TMDSEVM6472 TMDSEVM6472LE

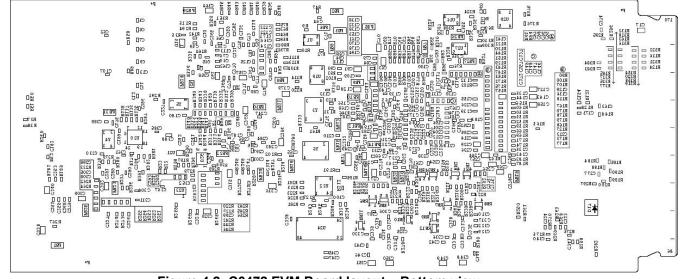


Figure 4.2: C6472 EVM Board layout – Bottom view

4.2 Connector Index

The C6472 EVM board has several connectors which provide access to various interfaces on the board.

Connector	Pins	Function		
J1	80	HPI DC Connector		
J2	170	AMC Edge Connector		
J3	28	Ethernet Connector		
J4	3	UART 3-Pin Connector		
J5	14	MSP430 JTAG Connector		
J6	3	Power Input Jack Connector		
J7	5	Mini-B USB Connector		
J8 60		TI 60-Pin DSP JTAG Connector ^[3]		
		PGA JTAG Connector		
J10	6	UART Path Select Connector		
J1	5	Mini-AB USB Connector ^[4]		

Table 8: TMS320C6472 EVM	Board Connectors
--------------------------	------------------

Note: [3] – Not Available in TMDSEVM6472LE.

[4] - Present on XDS5602v2 Mezzanine Card. Available in TMDSEVM6472LE only.

4.2.1 J1, HPI DC Connector

Connector J1 provides the HPI Interface of the DSP to an external host. The signals on this connector are shown in the table below. This connector is identical to the HPI connector implemented on previous AMC EVMs of TI, so that any previous test fixtures will connect without revision. The signals on this connector are shown in the table below.

Table 9: HPI DC Connector								
Pin	Signal	Description	Pin	Signal	Description			
1	VCC5	+5V Power	2	VCC3.3	+3.3V Power			
3	GND	Ground Signal	4	VCC3.3	+3.3V Power			
5	VCC5	+5V Power	6	VCC1.8	+1.8V Power			
7	GND	Ground Signal	8	GND	Ground Signal			
9	HPI_D1	Data Signal - 1	10	VCC1.8	+1.8V Power			
11	HPI_D3	Data Signal – 3	12	HPI_D0	Data Signal – 0			
13	HPI_D5	Data Signal – 5	14	HPI_D2	Data Signal – 2			
15	HPI_D7	Data Signal – 7	16	HPI_D4	Data Signal – 4			
17	GND	Ground Signal	18	HPI_D6	Data Signal – 6			
19	HPI_D9	Data Signal – 9	20	GND	Ground Signal			
21	HPI_D11	Data Signal - 11	22	HPI_D8	Data Signal – 8			
23	HPI_D13	Data Signal – 13	24	HPI_D10	Data Signal – 10			
25	HPI_D15	Data Signal - 15	26	HPI_D12	Data Signal – 12			
27	GND	Ground Signal	28	HPI_D14	Data Signal - 14			
29	HPI_DS2#	Data Strobe - 2	30	GND	Ground Signal			
31	GND	Ground Signal	32	HPI_HAS#	_			
33	HPI_DS1#	Data Strobe - 1	34	GND	Ground Signal			
35	GND	Ground Signal	36	HPI_CNTL0	Control Select 0			
37	HPI_CS	Chip Select	38	GND	Ground Signal			
39	GND	Ground Signal	40	NC	_			
41	HPI_CNTL1	Control Select 1	42	GND	Ground Signal			
43	GND	Ground Signal	44	HPI_INT	Interrupt			
45	HPI_RDY#	Ready indication	46	GND	Ground Signal			
47	GND	Ground Signal	48	NC				
49	HPI_RW#	Read / Write select	50	NC				
51	NC		52	NC				
53	NC		54	NC				
55	NC		56	GND	Ground Signal			
57	NC		58	NC				
59	NC		60	NC				
61	GND	Ground Signal	62	NC				
63	NC		64	NC				
65	NC		66	NC				
67	NC		68	TIMI0	Timer Input			
69	NC		70	GND	Ground Signal			
71	GND	Ground Signal	72	TIMI1	Timer Input			
73	WDOUT#	Watchdog timer output	74	GND	Ground Signal			
75	GND	Ground Signal	76	TIMO2	Timer Output			
77	HPI HWIL	Half Word Select	78	GND	Ground Signal			
79	GND	Ground Signal	80	NC	Ŭ			

Table 9: HPI DC Connector

4.2.2 J2, AMC Edge Connector

The J2 card edge connector plugs into an AMC compatible carrier board and provides a high speed Serial RapidIO, TSIP and I2C interfaces to the carrier board. This connector is the 170 pin B+ style. The pin out for the connector is shown in the figure below.

I able 10: AMC Edge Connector					
Pin	Signal	Description	Pin	Signal	Description
1	GND	Ground Signal	170	GND	Ground Signal
2	VCC12	+12V Power	169	NC	
3	PS1#	Presence 1	168	NC	
4	MP	Management Power	167	NC	
5	GA0	Geographic Address 0	166	NC	
6	NC		165	NC	
7	GND	Ground Signal	164	GND	Ground Signal
8	NC		163	NC	
9	VCC12	+12V Power	162	NC	
10	GND	Ground Signal	161	GND	Ground Signal
11	P0_SG_OUT_P		160	NC	
12	P0_SG_OUT_M		159	NC	
13	GND	Ground Signal	158	GND	Ground Signal
14	P0 SG IN P	<u> </u>	157	NC	
15	P0 SG IN M		156	NC	
16	GND	Ground Signal	155	GND	Ground Signal
17	GA1	Geographic Address 1	154	NC	
18	VCC12	+12V Power	153	NC	
19	GND	Ground Signal	152	GND	Ground Signal
20	P1_SG_OUT_P		151	NC	-
21	P1_SG_OUT_M		150	NC	
22	GND	Ground Signal	149	GND	Ground Signal
23	P1 SG IN P		148	NC	
24	P1_SG_IN_M		147	NC	
25	GND	Ground Signal	146	GND	Ground Signal
26	GA2	Geographic Address 2	145	NC	
27	VCC12	+12V Power	144	NC	
28	GND	Ground Signal	143	GND	Ground Signal
29	NC	- V	142	NC	Ť
30	NC		141	NC	
31	GND	Ground Signal	140	GND	Ground Signal
32	NC	- 0 -	139	NC	
33	NC		138	NC	
34	GND	Ground Signal	137	GND	Ground Signal
35	NC		136	NC	
36	NC		135	NC	
37	GND	Ground Signal	134	GND	Ground Signal
01			104		Cround Oighdi

Table 10: AMC Edge Connector

Technical Reference Manual

SPRUFU2 - Revised March 2011

38	NC		133	NC	
39	NC		132	NC	
40	GND	Ground Signal	131	GND	Ground Signal
41	ENABLE#	Enable Signal	130	I2C_SDA	I2C SDA
42	VCC12	+12V Power	129	I2C SCL	I2C_SCL
43	GND	Ground Signal	128	GND	Ground Signal
44	NC		127	NC	
45	NC		126	NC	
46	GND	Ground Signal	125	GND	Ground Signal
47	NC		124	TDM FS	TDM FS ALT
48	NC		123	TDM CLK	TDM CLK ALT
49	GND	Ground Signal	122	GND	Ground Signal
50	NC		121	TDM7	TSIP1 TX3/RX1
51	NC		120	TDM6	TSIP1 TX1/RX3
52	GND	Ground Signal	119	GND	Ground Signal
53	NC		118	TDM5	TSIP1 TX2/RX0
54	NC		117	TDM4	TSIP1 TX0/RX2
55	GND	Ground Signal	116	GND	Ground Signal
56	SCL IPMB	Ŭ	115	TDM3	TSIP0 TX3/RX1
57	VCC12	+12V Power	114	TDM2	TSIP0 TX1/RX3
58	GND	Ground Signal	113	GND	Ground Signal
59	NC	Ŭ	112	TDM1	TSIP0 TX2/RX0
60	NC		111	TDM0	TSIP0 TX0/RX2
61	GND	Ground Signal	110	GND	Ground Signal
62	NC	Ŭ Ŭ	109	NC	
63	NC		108	NC	
64	GND	Ground Signal	107	GND	Ground Signal
65	NC	-	106	NC	
66	NC		105	NC	
67	GND	Ground Signal	104	GND	Ground Signal
68	NC		103	NC	
69	NC		102	NC	
70	GND	Ground Signal	101	GND	Ground Signal
71	SDA_IPMB		100	NC	
72	VCC12	+12V Power	99	NC	
73	GND	Ground Signal	98	GND	Ground Signal
74	TDM_CLK_P	TSIP Clock A	97	RIOTX_P1	SRIO Port 1-TX
75	TDM_CLK_N		96	RIOTX_N1	SRIO Port 1-TX
76	GND	Ground Signal	95	GND	Ground Signal
77	TDM_FS_P	TSIP Clock B	94	RIORX_P1	SRIO Port 1-RX
78	TDM_FS_N		93	RIORX_N1	SRIO Port 1-RX
79	GND	Ground Signal	92	GND	Ground Signal
80	NC		91	RIOTX_P0	SRIO Port 0-TX
81	NC		90	RIOTX_N0	SRIO Port 0-TX
82	GND	Ground Signal	89	GND	Ground Signal
83	PS0#	Presence 0	88	RIORX_P0	SRIO Port 0-RX
84	VCC12	+12V Power	87	RIORX_N0	SRIO Port 0-RX
85	GND	Ground Signal	86	GND	Ground Signal

4.2.3 J3, Ethernet Connector

J3 is vertically stacked dual gigabit Ethernet connector with integrated magnetics. It is driven from the 88E1121 Marvell PHY device. The pin out for this connector is shown in the table below.

Pin #	Signal Name	Pin #	Signal Name
1	Port 0 – MD0+	13	Port 1 – MD0+
2	Port 0 – MD0-	14	Port 1 – MD0-
3	Port 0 – MD1+	15	Port 1 – MD1+
4	Port 0 – MD1-	16	Port 1 – MD1-
5	Port 0 – MD2+	17	Port 1 – MD2+
6	Port 0 – MD2-	18	Port 1 – MD2-
7	Port 0 – MD3+	19	Port 1 – MD3+
8	Port 0 – MD3-	20	Port 1 – MD3-
9	VCC1.8	21	VCC1.8
10	Ground	22	Ground
11	Port 0 – LED+	23	Port 1 – LED+
12	Port 0 – LED-	24	Port 1 – LED-

Table 11	Ethernet	Connector	nin out
	LUIGINGU	Connector	pin out

4.2.4 J4, UART 3-Pin Connector

J5 is 3-pin male connector for RS232 serial interface. A 3-Pin female to 9-Pin DTE female cable will be needed to connect this to a PC. The pin out for the connector is shown in the figure below.

Pin #	Signal Name
1	Ground
2	Transmit
3	Receive

Table 12: UART Connector pin out

4.2.5 J5, MSP430 JTAG Connector

J5 is a 14 pin JTAG connector for MSP430 only. The pin out for the connector is shown in the figure below.

Pin #	Signal Name	Pin #	Signal Name
1	TDO	8	TEST
2	NC	9	NC
3	TDI	10	RESET#
4	VCC	11	NC
5	TMS	12	NC
6	No Pin (Key)	13	NC
7	TCK	14	TDO

Table 13:	MSP430	JTAG	Connector	pin out
		0170	Connector	

4.2.6 J6, Power Input Jack Connector

J6 is a 3 pin, 2.5mm power jack with the center tip as positive polarity. Do NOT use this connector, if powering the board from the AMC carrier back-plane.

4.2.7 J7, Mini-USB Connector

In TMDSEVM6472, J7 is available to connect CCS with C6472 DSP using on-board XDS100 type emulation circuitry as well as to access UART-over-USB. In TMDSEVM6472LE, J7 is available for UART-over-USB only.

The pin out for the connector is shown in the table below.

Pin #	Signal Name	
1	VBUS	
2	D-	
3	D+	
4	ID	
5	Ground	

Table 14: Mini-B USB Connector pin out

4.2.8 J8, DSP JTAG Connector

J8 is a standard TI 60 pin JTAG connector for XDS560v2 Emulator. The onboard switch multiplexes this interface with the onboard emulation interface. When an external emulator is plugged into J8, the external emulator can connect with the DSP. The I/O voltage level on these pins is 3.3V. So any 3.3V compatible emulator can be used to interface to the C6472 device. Note, that when an external emulator is plugged into this connector (J8), the onboard emulation circuitry will be disabled. The pin out for the connector is shown in the figure below.

Table 15. DSP JTAG Connector pill out					
Pin #	Signal Name	Pin #	Signal Name		
B1	ID0	D1	NC		
A1	Ground	C1	ID2		
B2	TMS	D2	Ground		
A2	Ground	C2	EMU18		
B3	EMU17	D3	Ground		
A3	Ground	C3	TRST		
B4	TDI	D4	Ground		
A4	Ground	C4	EMU16		
B5	EMU14	D5	Ground		
A5	Ground	C5	EMU15		
B6	EMU12	D6	Ground		
A6	Ground	C6	EMU13		
B7	TDO	D7	Ground		
A7	Ground	C7	EMU11		
B8	TVD	D8	Type1 (Ground)		
A8	Type0 (NC)	C8	TCLKRTN		
B9	EMU9	D9	Ground		
A9	Ground	C9	EMU10		
B10	EMU7	D10	Ground		
A10	Ground	C10	EMU8		
B11	EMU5	D11	Ground		
A11	Ground	C11	EMU6		
B12	TCLK	D12	Ground		
A12	Ground	C12	EMU4		
B13	EMU2	D13	Ground		
A13	Ground	C13	EMU3		
B14	EMU0	D14	Ground		
A14	Ground	C14	EMU1		
B15	ID1	D15	Ground		
A15	TRGRSTz	C15	ID3		

Table 15	nen	ITAC	Connector	nin out
1 able 15:	DSP	JIAG	Connector	pin out

4.2.9 J9, FPGA JTAG Connector

J9 is a 10 pin JTAG connector for FPGA only. The pin out for the connector is shown in the figure below.

Pin #	Signal Name
1	TCK
2	GND
3	TDO
4	NC
5	TMS
6	VJTAG
7	VPUMP
8	TRST#
9	TDI
10	GND

Table 16: FPGA JTAG Connector pin out

4.2.10 J10, UART Path Select Connector

UART port can be accessed either through USB connector (J7) or through 3-pin serial port header (J5). The selection can be made through UART path select connector J10 as follows:

- UART over USB Connector (Default): Shunt installed over J10.3-J10.1 and J10.4 -J10.2
- UART over 3-Pin Header J4 Shunt installed over J10.3-J10.5 and J10.4 -J10.6

The pin out for the connector is shown in the figure below.

Pin #	Signal Name	Pin #	Signal Name		
1	FT2232 Transmit	2	FT2232 Receive		
3	UART Transmit	4	UART Receive		
5	MAX3221 Transmit	6	MAX3221 Receive		

Table 17: UART Path Select Connector pin out

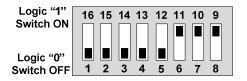
4.2.11 J1, Mini-AB USB Connector – In TMDSEVM6472LE only

Mini-AB USB connector (J1) mounted on Mezzanine Card, is available to connect EVM to CCS for XDS560v2 type emulation. The pin out for the connector is shown in the table below.

Table 18: Mini-AB USB Connector pin out

Pin #	Signal Name
1	VBUS
2	D-
3	D+
4	ID
5	Ground

4.3 Switches


The TMS320C6472 EVM Board has three DIP and two push button switches, namely SW1 to SW5. SW1 to SW3 are DIP switches and SW4 and SW5 are push button switches. The function of each of the switches is listed in the table below.

Switch	Function
SW1	DSP Configuration
SW2	DSP Boot mode
SW3	User switch
SW4	Warm Reset
SW5	Cold Reset

Table 19: C6472 EVM Board Switches

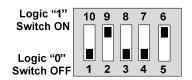
4.3.1 SW1, DSP Configurations

SW1 is an 8 position DIP switch that is used for DSP configuration. A diagram of SW1 switch (with factory default settings) is shown below.

Figure 4.3: SW1 default settings

The following table describes the positions and corresponding function on SW1.

SW1 Position	Description	Default Value	Function
5 - 1	CFGG[4:0]	00000	DSP Configuration selection Pins
6	DDREN	1(ON)	OFF - DDR2 disable
-		(-)	ON - DDR2 enable
7	RIOEN	1(ON)	OFF - SRIO disable
			ON - SRIO enable
8	LENDIAN	1(ON)	OFF - Big Endian mode
			ON - Little Endian mode


Table 20: SW1, DSP Configuration Switch

4.3.2 SW2, DSP Boot Mode

SW2 is a 5 position DIP switch that is used for DSP boot mode selection and system clock out enable option. A diagram of the SW2 switch (with factory default settings) is shown below.

Figure 4.4: SW2 default settings

The following table describes the positions and corresponding function on SW2.

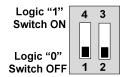

SW2 Position	Description	Default Value	Function
4 - 1	Boot Mode[3:0]	0010	Boot mode selection pins for DSP. Master I2C boot mode for I2C address 50h Refer to <u>TMS320C6472 datasheet</u> for details of other boot modes supported.
5	CLKOUTEN	1(ON)	OFF – SYSCLKOUT disable ON – SYSCLKOUT enable

Table 21: SW2, DSP Boot Mode Selection Switch

Note: Please change Boot Mode [3:0] to "0011" for NAND boot mode of this EVM. "0011" is primarily a Master I2C boot mode for I2C address 51h for DSP, which works as NAND boot mode in this EVM.

4.3.3 SW3, User Switch

SW3 is a 2 position user accessible switch. A diagram of the SW3 switch (with factory default settings) is shown below. FPGA monitors status of the user switches and stores its value into internal FPGA registers. The DSP can read user switches' value by accessing FPGA's internal registers.

Figure 4.5: SW3 default settings

4.3.4 SW4, Warm Reset

Push button Switch SW4 asserts DSP's RESET# input when pressed. This will reset the DSP and boot parameters will be reloaded.

4.3.5 SW5, Cold Reset

Push button Switch SW5 asserts DSP's POR# and global board reset when pressed. This is equivalent to a power cycle of the board and will have following effects:

- Resets DSP
- Resets FPGA
- Resets Ethernet PHY
- Resets I2C-UART bridge
- Reloads boot parameters.

Re-launch and/or re-connect of CCS application may be required after pressing warm or cold reset buttons.

Note: User may refer to <u>TMS320C6472 datasheet</u> to check difference between assertion of DSP RESET# and DSP POR# signals.

4.4 Test Points

TMS320C6472 EVM Board has 29 test points. The position of each test point is shown in the figure 4.6 and its description is listed in Table 22.

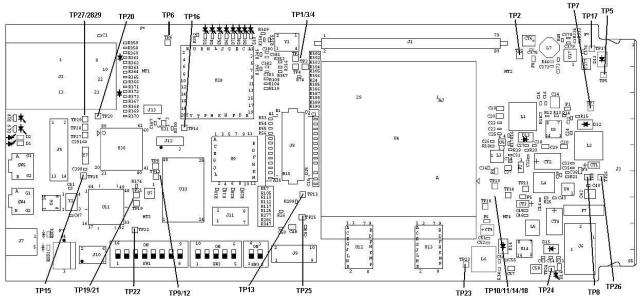


Figure 4.6: Board Test Points ^[5]

Note: [5] - Some of these TPs may not be visible in TMDSEVM6472LE

Test Point	Signal	Test Point	Signal
TP1, TP5, TP20, TP23, TP25, TP26	Ground	TP13	System Clock Out
TP2	+2.5V Supply	TP14	+1.2V Supply
TP3	RGCLK0	TP15	FT2232H, PWREN#
TP4	RGCLK1	TP16	Enable#
TP6	Test Point, Ethernet PHY	TP17	Management Power (+3.3V)
TP7	+3.3V Supply	TP18	+1.8V
TP8	+5V Supply	TP21	FT2232H, GPIOH0
TP9	System (Cold) Reset	TP22	FT2232H, GPIOH1
TP10	+1.5 Supply	TP24	+12V Input Supply
TP11	CVDD Supply (+1.2V)	TP27	MSP430 SMCLK
TP12	DSP (Warm) Reset	TP28	MSP430 ACLK

Table 22: C6472 EVM Board Test Points

Technical Reference Manual

SPRUFU2 - Revised March 2011

4.5 System LEDs

The C6472 EVM board has 11 LEDs. Their positions on the board are indicated in figure 4.7. The description of each LED is listed in table 23.

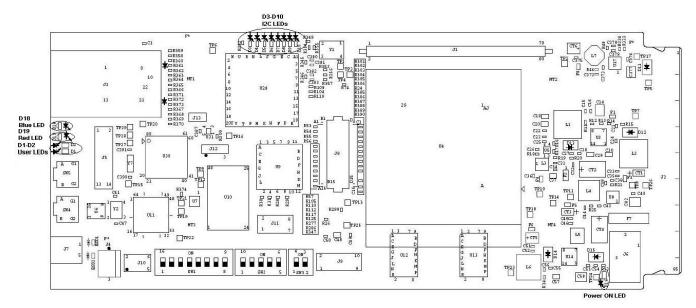


Figure 4.7: The C6472 EVM Board LEDs

Table 23:	The C6472	EVM EVM	Board LEDs
-----------	-----------	---------	------------

LED#	Color	Description
D1, D2	Orange	User LEDs
D3 – D10	Green	I2C LEDs
D16	Green	Board Powered ON Indicator
D18	Blue	Hot Swap status in AMC chassis
D19	Red	Failure and Out of service status in AMC chassis

Additional LEDs on TMDSEVM6472LE board are highlighted in figure 4.8 and their description is listed in table 24.

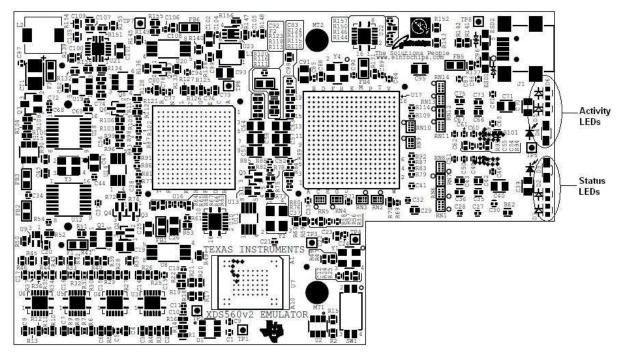


Figure 4.8: TMDSEVM6472LE Board Additional LEDs

LED#	Color	Description		
D1 (Activity LED 1)	Red	ON - DTC Ready OFF - DTC Not Ready		
D2 (Activity LED 2)	Yellow	ON - FPGA Programmed OFF - FPGA Not Programmed		
D3 (Activity LED 3)	Green	Reserved		
D4 (Status LED 3)	Green	ON =CCS Connected OFF= CCS Disconnected		
D5 (Status LED 2)	Yellow	DTC to Host Activity		
D6 (Status LED 1)	Orange	Target to DTC Trace Activity		

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Product Applications

Amplifiers	http://amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
-		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated

Page 49 / 49

