
by Manish Desai
Project Lead – ASIC - FGPA
eInfochips
manish.desai@einfochips.com

The growing demand for high-end security
systems with video monitoring for a variety
of applications has fueled a need for
embedded systems that can quickly capture
multiple audio/video channels, process and
compress the information and send it to a
central monitoring system via a high-speed
Internet connection or host PC interface.

The new state-of-the-art Xilinx®

Virtex®-5 FPGA offers an exciting oppor-
tunity for single- or few-chip solutions to
such A/V monitoring applications, thanks
to advanced features such as a high-end
system and networking interface, built-in
processor, high-speed serdes, advanced
clock management and pre-bit deskew in
the I/O blocks. It might seem as if all these
sophisticated features could complicate the
design process. But in fact, early-stage
planning can streamline the job while
ensuring effective usage of the FPGA’s
available resources.

00 Xcell Journal Fourth Quarter 2008

A/V Monitoring System
Rides Virtex-5
A/V Monitoring System
Rides Virtex-5 State-of-the-art FPGA forms the

basis for a multi-input audio/video
remote-monitoring application.

XCEL LENCE IN NEW APPL ICAT IONS

Let’s examine some of the challenges of
implementing designs in Virtex-5 FPGAs
and delineate techniques to get the most
out of its feature set, as demonstrated by a
recent project. The process involved a
number of steps, starting with choosing the
right Virtex-5 for the application. Other
concerns included clock requirement
analysis, initial floor planning, core genera-
tion and IP integration, timing considera-
tions and constraint definition, all the way
to post-place-and-route timing analysis and
timing fixes. The Virtex-5 FPGA’s hard-
wired macros proved central, as did its I/O
blocks and source-synchronous design. For
the sake of this article, we’ll assume that
we’ve assembled the IP blocks and that they
are either ready to use or already generated
with CORE Generator™.

Picking the Right Device for the Job
Most audio/video capture devices support a
single channel and generate source-syn-
chronous digital in the Y/Cr/Cb data for-

expandability up to 2 Gbytes.) The internal
logic of the FPGA performs compression (if
enabled) and sends data over Ethernet; alter-
natively, it sends uncompressed data to the
host PC for storage and further processing
via the PCI/PCI Express® link.

For our design, the FPGA had to sup-
port up to 10 digital audio/video source-
synchronous input channels (20-bit
source-synchronous Y/Cr/Cb data format),
and it had to be configurable for the
SD/HD data format. It also needed a PCI
Express link with support for four lanes
(default, one lane), single-channel
10/100/1,000 Ethernet, a DDR memory
controller with interface capacity of 128
Mbytes to 1 Gbyte and an embedded
microcontroller in the form of a soft core
for configuration control. Other require-
ments included an A/V signal-processing
and optional compression algorithm, a
central control unit with an advanced
DMA engine and one A/V output port
connected to VGA or a standard TV.

mat. Although DSPs are capable of captur-
ing digital audio/video and can perform
digital signal-processing tasks, they typical-
ly support only a few channels. Therefore,
in this design we chose an FPGA, which
proved to be a good alternative for both
multiple-channel inputs and signal-pro-
cessing tasks.

Figure 1 shows a typical security/video
monitoring system with a 3G/SD/HD/SDI
video interface. For this design, the camera
sends information in 3G-SDI format to the
board, which in turn collects the data and
converts it into 10-bit (Y/Cr/Cb formatted)
source-synchronous video data (10/20-bit
interface) at a maximum clock frequency of
145.5 MHz. It handles source-synchronous
audio data at a maximum clock frequency
of 96 kHz.

We used the Virtex-5 to capture the video
and audio data, and then synchronize it with
the internal FPGA clock and store it in DDR
memory. (The memory was 512 Mbytes and
32 bits wide, so the FPGA had to support

Fourth Quarter 2008 Xcell Journal 00

XCEL LENCE IN NEW APPL ICAT IONS

Camera Module
#1

Camera Module
#2

Camera Module
#3

Camera Module
#4-10

Analog/Digital TV
(for Local
Monitoring)

3G/HD/
SD RX

3G/HD/
SD RX

3G/HD/
SD RX

3G/HD/
SD RX

Audio
Video

Analog
I/F

Video Data
Video CLK
Audio Data
Audio CLK
Video Data
Video CLK
Audio Data
Audio CLK

Video Data
Video CLK
Audio Data
Audio CLK

Video Data
Video CLK
Audio Data
Audio CLK

Audio-Video
Data Capture

Audio-Video
Data Capture

Audio-Video
Data Capture

Audio-Video
Data Capture

AV o/p IF

PCIE_IF to
System Bus Bridge

PC Interface
(PCI/PCI-E)

Audio Video
Signal

Processing
[Image
Resize
+ OSD]

+
Compression

(Optional)

Embedded
Micro

Processor

System
Clock-Reset

Network
Controller

DDR
Controller

1000 BaseT
PHY

DDR
Memory

System Interface
Controller

[DMA Engine]

Host PC for
Local Monitoring

A
S
Y
N
C
-
F
I
F
O

3G SD – Video Monitoring Card

Figure 1 – Typical Video Monitoring System Block

To meet these specifications, we had to
consider several factors when implement-
ing the design. Chief among them were
clock requirement analysis, initial floor
planning, core generation and IP integra-
tion, timing-constraint definition and
post-place-and route timing analysis and
timing fix. But the first decision was choice
of the FPGA.

Selection of the FPGA
We based our selection on a number of fac-
tors. The device needed to meet our esti-
mated I/O requirements, and it had to
have an appropriate number of logic cells, a
suitable block RAM size as well as a num-
ber of clock buffers and clock management
devices such as phase-locked loops (PLLs),
digital clock management (DCM) and
multiply-accumulate blocks. In looking
over the data sheets from various FPGA
vendors, it became clear that the FPGA
that best suited our requirements was the
Xilinx Virtex-5 XCVSX95T-FF1136.

The Virtex-5 contains all the design
features we needed. It is equipped with
640 I/Os and an additional multi-gigabit
transceiver (MGT) for PCI Express,
along with Gigabit Ethernet media-access
control (MAC) and RocketIO™ or an
external PHY for local- and wide-area
networking. A 3G-SDI receiver handles
source-synchronous data capture. The
PCI Express one-, four- or eight-lane
interface links with a host PC for process-
ing and storage requirements.

The Virtex-5 also boasts a built-in
soft-core processor for configuration con-
trol, high-speed multiply-accumulate
units (multiple DSP48E blocks) for digi-
tal signal processing and compression-
algorithm deployment. Advanced clock
management is accomplished by means of
a global clock buffer, regional clock buffer
and I/O clock buffer with clocking mod-
ule—namely, a PLL and two DCMs.
Finally, it offers asynchronous FIFO and

digital signal processing through more
than 200 block RAMs of 18 kbits.

Clock Requirement Analysis
Once we selected the FPGA, we began the
design process by analyzing clocking
requirements before mapping the signals to
the I/O bank or I/O pins. Over the years,
we’ve learned to do this step early—it often
proves to be the most important part of the
whole system design and plays a major role
in determining overall performance.

For the analysis of clock requirements, it
is important to consider a few factors:

• Does the FPGA have sufficient clock-
capable I/O and global clock I/O lines?

• Are there enough PLLs, DCMs and
global clock buffers?

• Does the global clock I/O/buffer sup-
port the maximum required frequency?

For example, this design’s clocking
requirements consisted of one global system
clock running at 150 to 200 MHz with
PLLs used by all internal logic for process-
ing; one global clock with a PLL/DCM
PCI Express link running at 250 MHz; one
global clock buffer/PLL and DCM for the
Ethernet MAC running at 250 MHz; 16
regional/local clock I/Os for the source-sync
video clock running at 145 MHz; one glob-
al capture clock for audio data/clock signals
(48 kHz/96 kHz); one regional clock-capa-
ble pin for the DDR memory interface run-
ning at 200 MHz, and one 200-MHz clock
(generated by the PLL/DCM) for pre-bit
deskew in I/O blocks.

In total, we needed four to six global
clock buffers and 16 local clock buffers.
The FPGA XCVSX95T-FF1136 offers 20
global clock input pins and four clock-
capable I/Os in each bank. The device has
14 banks with 40 pins, each supporting
regional clock input buffers, and four
banks containing 20 pins, each supporting
global clock input buffers. You can directly

connect the clock-capable pins of the I/O
banks to regional or I/O buffers, and use
them in specific or adjacent regions. In
addition, each GTP/MGT has a reference-
clock input pin.

Initial Floor Planning
After performing the clock analysis, we cre-
ated an initial floor plan. This is a critical
phase of the design, because the decisions
made at this point will determine whether
the final design is going to meet timing. The
bank selection and pin assignment are
important steps of floor planning. How you
handle them depends on the placement of
other components around the FPGA.

The Virtex-5 FPGA has a total of 18
I/O banks on which to map various
input/outputs. A few I/O banks support 20
input/outputs or 10 global clocks. Most of
the other banks support 40 input/outputs,
on which there are four input and eight
output clock-capable pins.

IOBANK #3 and IOBANK #4 each
support 10 single-ended/differential glob-
al clock inputs. Each bank supports 20
pins. Any pins not used for clock/reset
input can be employed for general-pur-
pose I/O. Two other banks, IOBANK #1
and IOBANK #2, are close to the center
of the FPGA and each supports 20 I/O
pins. Xilinx dictates that you must map
all single-ended clock inputs to positive
global clock input pins.

Meanwhile, the upper and lower halves
of the FPGA consist of three clocking mod-
ules (CMTs): a PLL and two DCMs. We
needed to ensure that we properly mapped
all global clock signals that required a PLL
in the upper and lower half of the device,
such that the design had a direct connection
from the global clock input buffers to the
PLLs. We then used the remaining 14 I/O
banks, supporting 40 I/O lines, in single-
ended/differential mode. Each bank con-
sists of four single-ended and eight
differential clock-capable pins. We could

00 Xcell Journal Fourth Quarter 2008

XCEL LENCE IN NEW APPL ICAT IONS

In looking over the data sheets from various FPGA vendors,
it became clear that the FPGA that best suited our requirements

was the Xilinx Virtex-5 XCVSX95T-FF1136.

Fourth Quarter 2008 Xcell Journal 00

then map or connect the clock-capable pins
to regional or I/O clock buffers.

Normally, it is good to use these clock-
capable pins and regional buffers (BUFR)
to map source-synchronous clock inputs.
The regional buffer has a lower skew and
can access three regions (one where the
regional buffer is located, one above and
one below). But for bank selection of
source-synchronous data, we prefer to use a
single I/O bank. If we need additional I/O,
it is better to use I/O banks for data signals
that we’ve previously mapped to adjacent
banks. (For package information, refer to
ug195.pdf from the Xilinx Web site.)

We followed several steps for the initial
floor planning of the design. First, we
placed the system clock in the upper half
and then placed the audio capture (option-
al) clock in the lower half. We locked the
CMT of each half for the I/O bank 3/4
requirements. This map ensures that each
half is left with two PLL/DCMs (CMTs)
that we can use for the PCI Express and
Gigabit Ethernet MAC (SGMII) features.

Because we mapped synchronous data
to banks that consisted of regional clocks,
we mapped 10 audio/video channel inputs
on the remaining I/O banks. Each video
channel consisted of 20 data lines, three
control signals and video clock inputs.
Meanwhile, each audio channel consisted
of four data signals, three control signals
and one audio clock signal. This made a
total requirement of 32 signals with at least
two clock-capable pins (the FPGA’s 14
banks can support 40 pins and four clock-
capable pins).

For this design, 10 A/V channels use 10
I/O banks. We mapped the video clock and
audio clock to clock-capable pins to ensure
we effectively used the regional and I/O
clock buffers. Based on the PCB require-
ments, we selected for audio/video channels
banks 5, 6, 13, 17, 18, 19, 20, 22 and 25.

For DDR memory, the design supports
a 32-bit data bus, 14 address lines and a
few control lines. We needed 85 to 90 sig-
nals to map the DDR memory interface.
As per the PCB layout, we used I/O banks
11, 23 and 15 to map all DDR I/O signals.
Since DDR memory works on the system
clock, we chose to map the read data strobe

signal generated by the DDR to clock-
enabled I/O lines.

Xilinx offers the PCI Express and Gigabit
Ethernet (GbE) MAC as hard macros. The
Xilinx CORE Generator tool generates the
proper IP core with the combination of hard
macro, block RAM and some advanced
RTL logic to render the blocks usable. The
tool also provides detailed constraints for
pin mapping, the PLL/DCM and timing for
a specific Xilinx FPGA. We advise using the
recommended pin definitions as described
in the release notes or UCF file that CORE
Generator creates for your design. Also, you
can use Xilinx’s Plan-Ahead™ tool to con-
firm or cross-check any pin mapping you’ve
defined manually.

Core Generation and IP Integration
The task of generating cores with CORE
Generator and integrating intellectual
property can be tricky. Let’s examine some
of the challenges involved in generating
and integrating the CMT, ASYNC FIFO,
block RAM, PCI Express, GbE MAC and
DSP48E blocks. (For more detailed infor-
mation on the PCI Express and GbE MAC
blocks, visit the Xilinx Web site to make
sure you have the most recent version of
CORE Generator and the latest IP.)

The Virtex-5 supports various configu-
rations of clocking modules that you can
generate with the CORE Generator utility.
They include filter clock jitter PLLs, a PLL-
DCM pair with filter clock jitters, a PLL-
DCM pair or DCM for output dual-data
rate (ODDR), a standard phase-shift clock
DCM and dynamic clock-switching PLLs.

To generate PLLs, you first need to see
whether the input is single-ended or differ-
ential (in the example design, it is all single-
ended). Then you must determine whether
clock jitter is appropriate (in our case, it was
120 picoseconds) and whether you’ve used
the global buffer to buffer all the outputs.

Each PLL can generate up to six differ-
ent frequency clocks. In our case, the
design needed four 200-MHz system
clocks, each with 0, 90, 180 and 270
degrees of phase, and one audio capture
clock of 19.048 MHz or 39.096 MHz.

To drive clocks using ODDR flip-flops
in source-synchronous outputs, we imple-

mented a DCM that drives the ODDR
flip-flops for forward clocking. This DCM
runs in parallel to the DCM we used for
internal clocking.

We generated the ASYCN FIFO or
block RAM using CORE Generator and
supported ECC with interrupting logic on
an embedded microprocessor core to per-
form data error detection.

While generating the PCI Express core,
we had to ensure the reference clock had
the same performance as the PC mother-
board’s PCI Express slot output (that is,
100 MHz). Also, we needed to define how
many base address registers (BARs) the core
needed and whether the BARs were mem-
ory mapped or I/O mapped. We used the
BAR monitor, which helps in generating
BAR hits, for address decoding.

During the design of the bridge
between PCI Express and the system local
bus, we used the BARs—which act as
memory or I/O region chip select—to
access memory-mapped or I/O-mapped
registers or block RAM. We designed the
bridge logic in such a way as to make sure
that the core and bus properly accessed all
the register or block RAM. The Xilinx
PCI Express core also has a default ROM
expansion capability, and to accommodate
it we had to implement an address and
map inside the bridge. Bit position 6 of
the BAR hit points in this expansion
ROM area and the internal interface must
respond to these BAR hits.

If any of the above is missing, the host
PC won’t get any response if it tries to com-
municate and perform a read transaction.
It will enter an unknown state or generate
an unrecoverable error.

We used the CoreGen utility to generate
the GbE MAC with an RGMII/SGMII
external interface. We used the built-in
GTP module to communicate with select-
ed PHY devices. The GbE MAC supports
the MDIO interface to configure external
physical devices, a host interface and a 16-
bit single-channel client interface.

The DSP48E block, for its part, is a
25x18-bit multiplier and 48-bit hard-
macro accumulator. You can use it directly
as an instance or, by mapping the multiply-
accumulate, add and subtract functionality

XCEL LENCE IN NEW APPL ICAT IONS

implemented in RTL logic with Xilinx
tools. We recommend using standard RTL
logic to implement the multiply-accumu-
late, ADDR and multiplier. Include the
design constraints during synthesis and
placement and routing.

For IP integration, be sure to have a sep-
arate clock-reset module for each FPGA.
The asynchronous reset must be synchro-
nous with each and every clock, both glob-
al and regional. Internally, the reset signal is
asserted asynchronously and deasserted
synchronously with respect to specific
clocks, and its output is applied to the spe-
cific module to which the clock belongs.
Make sure you have connected all the glob-
al input clocks to the PLL/DCM core gen-
erated by CoreGen.

Also, be sure you’ve connected the
regional clock to BUFR/BUFIO. In addi-
tion, to keep your placement-and-routing
tool from using unnecessary routing
resources, make sure you generate only the
necessary reset signals. You need to ensure
that PLL/DCM lock conditions are
brought to external pins or to the config-
uration register. In our case, we only con-
nected the 200-MHz system clock PLL
lock to the I/O pins.

Definition of the IOB (input, output or
both input and output) synthesis and map-
ping constraints must be part of the
FPGA’s top RTL module. We instantiated
the topmost module of core logic inside the
FPGA’s top module. It must communicate
with the external interface via these IOB
definitions only.

IOB definitions consist of IBUF,
OBUF, IBUFDS, OBUFDS and the like.
Each in turn consists of supported user-
defined parameters for IO_STANDARD
(LVTTL, LVCMOS, etc). We used the
instance definition of the above to map
external I/O signals with the topmost RTL
module signals.

Since we were designing with high-
speed source-synchronous inputs and out-

puts, the Virtex-5’s pre-bit deskew capa-
bility, which is built into all I/O blocks
(IODELAY primitive), helped us to meet
setup-and-hold requirements at input and
output stage. For source-synchronous
inputs, the source-synchronous clock uses
BUFIO or BUFR, and it introduces addi-
tional delay. To compensate for this delay,
we drove data and clock inputs via an
IODELAY instance that we configured in
input delay mode with known delay
counts. Changing the delay count value
helped us meet timing requirements at the
input stage.

Similarly at the output stage, as syn-
chronous clock signals are driven with
data, we needed to make sure that data
and clock signals were driven so as to meet
the setup-and-hold of an FPGA or ASIC
at the other end. We used IODELAY
instances configured in an output delay
mode with a known delay count value for
both clock and data outputs. The IODE-
LAY needs an IODELAYCTRL primitive
instance at the top of the FPGA. The 200-
MHz input clocking to the IODELAY-
CTRL instance creates a delay count
precision of 70 ps on IODELAY.

Timing Consideration
and Constraints Definitions
After generating and implementing the IP,
the next step was to perform timing. We
constrained all the input clocks for period,
jitter and input offset delays, and set all out-
put delays with respect to the source clock
and input-to-output delay. We then created
the timing and placement constraints in
Xilinx User Constraint Files (UCFs).

We constrained all the input clocks to
specific frequencies and also defined the
jitter input using the following UCF code:

NET “i_clk_200_s”

TNM_NET = “IN_200_CLKGRP”;

TIMESPEC “IN_200_CLKGRP”

= PERIOD 5 ns HIGH 50%

INPUT_JITTER 0.1 ns

With respect to source-synchronous
data, we can set the input clock to a 0-
degree phase shift or 180-degree phase
shift, in the case of SDR, and 90-degree
phase shift in case of DDR. Figure 2 shows
the source-synchronous DDR data input
timing with the clock at a 90-degree phase

00 Xcell Journal Fourth Quarter 2008

XCEL LENCE IN NEW APPL ICAT IONS

Video ch1_data

Video ch1_clk

tv

ts_p
th

ts_n
tclk

DATA_P DATA_N

DDR Source Synchronous Data Input Timing Parameter

Figure 2 – Timing Diagram of DDR Inputs

The Virtex-5’s pre-bit deskew capability, which is built into all
I/O blocks (IODELAY primitive), helped us to meet setup-and-hold

requirements at input and output stage.

Fourth Quarter 2008 Xcell Journal 00

shift. Table 1 shows the external interface
input timing details.

The following are constraints we applied
for minimum timing values in UCF:

// Define Clock Net

NET “i_video_ch1_clk”

TNM_NET = “VIDEO_CH1_CLK”

TIMESPEC “VIDEO_CH1_CLK”

= PERIOD 6.8 ns HIGH 50%

INPUT_JITTER 0.1 ns

// Define Time Group for Rising and

Falling (In case of DDR Inputs)

TIMEGRP “VIDEO_CH1_CLK_R”

= “VIDEO_CH1_CLK” RISING;

TIMEGRP “VIDEO_CH1_CLK_F”

= “VIDEO_CH1_CLK” FALLING;

// Define Input Constraints.

OFFSET = IN 0.5 ns VALID 1ns BEFORE

“VIDEO_CH1_CLK” TIMEGRP

“VIDEO_CH1_CLK_R”

OFFSET = IN -1.5 ns VALID 1ns BEFORE

“VIDEO_CH1_CLK” TIMEGRP

“VIDEO_CH1_CLK_F”

For timing constraints on the PCI
Express and Gigabit Ethernet MAC cores,
we applied all timing and placement con-
straints for block RAM and PLL/DCM as
defined in the CORE Generator example.

We defined the output timings with
respect to input clock or PLL-generated
clocks in a UCF.

// Define OFFSET OUT with respect

to clock.

NET “video_data_p0” OFFSET = OUT 3

ns AFTER “i_clk_video_in”;

// Define MAXDELAY from Flip Flop to

pad to be minimum (Say 0.1 ns to

0.2 ns),

NET “video_data_p0_to_pad” MAXDELAY

= 0.1 ns

The OFFSET OUT doesn’t confirm
that all outputs on all data and clock signals
are exactly at 3 ns. The tool tries to meet
timings with zero or positive slack (that is,
less than 3 ns).

Since many Virtex-5 designs use multiple
asynchronous clocks, we then had to define
the false paths in the design so those clocks
would not be affected. We did this with the
following constraints settings in a UCF.

// Define False Path.

NET “video_data_p0”

TNM_NET = “VIDEO_CH1_TIMGRP”;

NET “core_clk_0”

TNM_NET = “CORE_CLK”;

TIMESPEC TS_FROM_VIDEO_CH0_TO_CORE =

FROM FFS (“VIDEO_CH1_TIMGRP”) TO FFS

(“CORE_CLK”) TIG

Post-P&R Timing Analysis and Timing Fix
After placing and routing our design, we
ran static timing analysis (STA) and timing
simulation to see if we had any further tim-
ing errors. For STA, we ensured that the
timing report covered all the constrained
and unconstrained paths. By using an STA
report, we can validate input/output tim-

ing and internal system timings. To fix the
input timing violations (setup and hold),
we use IDELAY with the appropriate tap
value to meet timing requirements. To fix
output timing violations, we made sure the
respective signal flip-flop was in IOB. To
fix the internal logic timing, we used an
FPGA editor to make changes to the floor
plan and the design’s RTL code.

We then ran timing simulation to catch
errors that we didn’t detect during static
timing analysis. The process involved gen-
erating a netlist compatible with the simu-
lator we used during RTL simulation, and
adding it to the Xilinx library path in tim-
ing simulation script.

Timing simulation will catch errors that
STA doesn’t. One critical example is an
address collision in dual-port RAM that
occurs when two logic blocks generate two
asynchronous clock domains and address-
es. Timing simulation also helps identify
slow-changing signal or multicycle paths
and multiclock domain paths in a design,
thereby prompting designers to apply bet-
ter timing constraints. That also helps fix
timing issues in STA.

The Virtex-5-based FPGA proved well-
suited for our video monitoring system
requirements. The regional clock buffer
and I/O clock buffers (with pre-bit deskew
at IOB level using IODELAY) allowed us
to support multichannel source-synchro-
nous audio/video inputs. Moreover, the
device’s PCI Express and Gigabit Ethernet
MAC hard macros gave us global connec-
tivity for remote monitoring.

The end result was a cost-effective solu-
tion for our A/V remote-monitoring appli-
cation. A bit of work at the early stage of
design made it easy to meet timing closure.
In our future design work, we will rely on
early-stage planning to ensure the effective
usage of the available resources of specific
FPGAs. Defining global and regional clocks
in detail and performing clock-requirement
analysis and initial floor planning will make
our flow more efficient, enabling us to rap-
idly design value-added products.

For more information, contact eInfochips
at sales@einfochips.com.

XCEL LENCE IN NEW APPL ICAT IONS

Timing Parameter Min (ns) Max (ns) Description

Tclk 6.6 – Clock period

ts_p (Setup Time) 0.5 1 Input Setup time for pos-edge of clock
with respect to posedge

ts_p (Setup Time) -1.5 -2.0 Input Setup time for neg-edge of clock
with respect to posedge

th (Hold Time) 0.5 – Input Hold time

tv (Data Valid Window) 1 1.5 Data Valid window

Table 1 – External Interface Input Timing Details

