
Assertion-Based Verification Shortens Project Design Time

A popular verification methodology helps users detect bugs by localizing their occurrence
and reducing simulation runs.

By Shailesh Dave

Designs are getting bigger by the day. The complexity of the testbench and the number of test
cases are increasing exponentially with this design complexity. Many interfaces, for example,
need various testbench architectures and a plethora of test cases. The result is a complex
verification environment combined with the need for a huge amount of verification time. Such
difficulties occur because there's no effective way of specifying what is to be exercised and
verified against the intended functionality. Close to 70% of project time for chip design is spent
on verification. Assertion-based verification is a methodology that helps the designer avoid this
tiring, tedious, error-prone, and long-time problem.

Essentially, the methodology allows assertions that detect bugs. It also writes coverage that
guides the test writers to write better. In addition, more effective tests can be specified. The basic
idea follows:

 Monitor all of the interfaces to the device under test (DUT) in order to validate the
correctness of the stimulus.

 Write protocol monitors in the DUT so that it is continuously monitored internally for the
correct behavior.

 Write coverage properties to make sure that the current test suites cover all of the
interested stimulus scenarios that are needed to test the functionality of the DUT.

As a result, designs can be verified thoroughly and effectively. In addition, bugs are found at the
cause point. These techniques support two methods: dynamic verification using simulation and
formal or semi-formal verification.

Although this method wasn't standardized or named, the industry has used assertions for
verification for a long time. In its simplest form, Verilog users coded conditional loops to check
for certain erroneous conditions or used a display for monitoring. VHDL programmers, on the
other hand, used an assert statement to check for erroneous conditions. To effectively use
assertions for verification, however, one needs a basic understanding of assertions and how they
work.

WHAT ARE ASSERTIONS?

Assertions are design checks. To catch bugs early on, a designer may embed them deep down in
the design. Or a verification engineer may write some as pin-checks for the black-box testing of
code. Assertions express all of the information about the functional/behavioral nature of the
block just as the designer intended it to be used. They also can be thought of as internal software
test points that wait for a particular predefined condition to occur. They then notify the designer
about the condition's occurrence. Such bugs are reported at the cause point rather than the effect
point, saving the designer from the tedious backtracing of waveforms.

Without assertions, test vectors had to be much longer in order to ensure that triggered bugs were
propagated to observable outputs. Otherwise, errors remained undetected. By adding assertions,
bad behavior inside the design could be checked. In addition, the bugs were observed instantly at
their source. An assertion-based interface specification also can be used to constrain pseudo-
random simulation and formal analysis. This approach ensures that the circuit will work properly
under all legal input stimuli while characterizing behavior in the presence of illegal input
sequences.

The biggest advantage of assertions is that they become part of the design. Modern assertion
methods enable the designer to specify assertions and monitors in line with the module's HDL
code. Placing assertions in line is key, as in-line assertions cannot get lost.

Assertions also were used at design boundaries to provide checks for interface behavior. This
function proved useful when design modules from different designers were integrated. Such
interface-checking assertions made the modules more portable by preserving the intimate design
knowledge needed to verify them as part of a larger system. As a result, modules with embedded
assertions became self-checking wherever they were later reused. The net benefits resulted in
finding problems sooner, spending less time analyzing them, reaching a stable design-
verification point sooner, and simplifying integration and design reuse.

Generally, there are two kinds of assertions. Concurrent assertions state that a given property
must always be true throughout a simulation. In contrast, procedural (sometimes called temporal)
assertions apply only for a limited time or under specified conditions.

A proper approach to assertions is just as necessary as their use. It isn't always advisable or
correct to write assertions from scratch for each project. They also must be modularized so that
the same assertions can be reused for different applications. Protocol assertions are the typical
classes of assertions that are the most suitable candidates for re-usability.

WHY ASSERTION-BASED VERIFICATION?
Normally, verification environments carry out black-box testing with many fairly complex
emulation techniques, reference models, and scripts. The environment then uses thousands of test
vectors to apply stimulus through hundreds of test cases. The idea is to match the functional
testing goal. At times, even these complex scripts don't help to pinpoint the problem. For
instance, say a problem is found at the interface. The tedious process of looking at waveforms for
the in-module bug starts when the design engineer--and many times a verification engineer--
spends all day looking at those 1 and 0 toggles on the screen. The engineers relate the signal's

previous state to the current state in order to find out what went wrong at what level. Many risks
are involved in this verification approach:

 The time that it takes to set up the emulation environment, code reference models, and
write scripts is huge.

 One needs to be sure of the reference model that's being used to compare the simulation
results. These reference models normally check for the data signals and often tend to
ignore the control signals. Once the reference model is made golden, the designer starts
catching errors. But he or she still may not know the exact cause. The designer may end
up doing a patch that can solve the problem temporarily. But the source of the problem
may still be hidden.

 If the testing is done at the interface level, it's probable that a bug is hidden somewhere
inside the module. Because it doesn't get propagated to the output, it remains hidden.

One cannot be sure of whether the sequence of inputs required to achieve a functional goal has
occurred unless a highly directed test case is written. As a result, a plethora of test cases are
required to achieve functional coverage. Assertions can help the designer to write
internal/interface checkers and simultaneously write coverage to make sure that a specific
scenario has been hit. The random generation of test cases will then be possible. In addition, 10
to 20 test cases could do what would otherwise have required hundreds of them.

Using assertions to specify interfaces is far superior to natural language and waveforms. After
all, assertions are unambiguous and executable. The clarity of assertions comes from having
well-defined syntax and semantics. Assertion languages allow the designer to clearly specify any
interface. Yet they often require significant coding to describe complex interfaces and register-
transfer-level (RTL) components. Such coding is definitely worth it, as it would take months off
the project schedule. An added advantage is coverage facility, which acts as a watchdog for a
specific desired scenario.

HOW ASSERTIONS WORK
Assertions are design checks that continuously get evaluated in the form of an expression. When
any expression doesn't hold true, an assertion flag is raised. The verification engineer can then go
directly to the problem instead of tediously backtracing the waveforms or analyzing a Megabyte-
large log file.

Assertions can be utilized in various ways. They can be included directly within the hardware-
description-language (HDL) code that comprises the RTL description of the design. They also
can be applied from outside in the form of a testbench or collections of test vectors in order to
check the design's response to stimulus.

Figure 1: Interface-level assertions are used to check for defined relationships between all of the inputs and outputs on a
chip.

Assertions can be developed by the designer and embedded in the design so that typical logic
bugs can be found early in the project. Typically, the verification engineer creates interface-level
assertions (black-box testing) to check for the defined relationship between all of the chip's
inputs and outputs (see Figure 1).

Figure 2: A reporting tool highlights the results from one simulation run with previously discussed assertions.

With embedded assertions, the bug shows up at the point of cause rather than a million clocks
later when it propagates to the output of the chip. There is a chance that the bug will be nipped in
the bud by the sub-module in it and therefore not propagated to the output. If a bug is detected at
the later stages of the design, it could prove lethal. Because embedded assertions go with the
design, they also make the reused-IP verification very easy.

As previously mentioned, assertions are basically protocol checkers that keep watch on specified
signals for a specific transition. If a transition doesn't follow the expected sequence, the assertion
reports an error. Assertions keep track of failing signals. Yet they also keep an eye on the

sequence of desired events and can be used to record a transaction. Take the example of a simple
bus protocol that has an arbiter and more than one client talking to each other on a databus. All
of the clients can talk to each other using the same bus, which the arbiter decides. The protocol
uses the legendary req, gnt, busy, and done signals.

In this protocol, the req is followed by gnt and then busy is followed by done (once the
requesting client gets the grant from the arbiter). Here are some simple assertions written in PSL:

//If Grant follows Request, then next is busy,

and next is done.

//psl property req_seq = always (reqA -> next

(gntA -> next (busy && next done))) @posedge clk;

//psl assert req_seq;

//If request is followed by Grant, then next

busy is high until done.

//psl assert always (reqB -> next (gntB -> next

(busy until done))) @posedge clk;

//A Grant is always followed by busy until, and

overlapping with, done.

//psl assert always (gntA || gntB) -> next (busy

until_ done) @posedge clk;

//If A has a request outstanding when B receives a

Grant, then A will receive a Grant before B

receives another Grant.

//psl assert always (reqA && gntB) -> next (gntA

before gntB) @posedge clk;

Clearly, it's easy to write an assertion and let the tool report the bug instead of studying and
relating the waveforms to find out what went wrong. Once an engineer becomes familiar with
writing assertions, shorthand assertions also can be used. These assertions are even more
convenient.

The req_gnt_seq can be written as:

//psl property req_gnt_seq = always {reqA; gntA}

|=> {busy; done} ;

//psl assert req_gnt_seq;

Informative reporting tools, which are built into the simulator, can compile information for the
user. They will provide tables or text information with assertion text and the time of the failure.
Figure 2 shows the results from one simulation run with the previously written assertions. Figure
3 illustrates a few common simulation errors.

Figure 3: A good reporting tool will capture typical simulation errors.

Another important aspect of assertions is functional coverage, which is far better and much more
helpful than code coverage. These days, the designs are too complex. As a result, there's a need
to make sure that all of the corner condition stimulus are generated and fed to the chip along with
numerous normal test scenarios. Obviously, verification engineers rely on a random approach for
test-vector generation. It's therefore even more important to make sure that a specific desired
scenario is achieved. Using functional coverage is the best way to achieve this goal.

Although code coverage provides an indication of what piece of code has been tested and which
has not, it fails to cover the sequence of events. For a verification engineer, the coverage for the
event sequence is of more interest because that sequence simulates the happenings in the real
world. With the increase in both the complexity and functionality of chips, the test plans are now
at a higher level of abstraction. It becomes relatively easy to track that all desired functional
scenarios are covered using functional coverage.

Although functional coverage can be written like an assertion, it is different in concept.
Assertions are written to catch sequences that shouldn't occur in a simulation run, whereas
coverage is used to make sure that the written sequence has occurred. Assertions therefore allow
the user to exactly specify both what is needed and what is not with the help of coverage and
assertion definitions.

Assertion-based verification benefits users by simplifying the diagnosis and detection of bugs. It
localizes the occurrence of a suspected bug and thereby reduces simulation-debug time
significantly. Another benefit is the capability to self-check code to help in the reuse of previous
designs. Finally, interface assertions help to find the interface issues early on while detecting
more bugs earlier and getting to the root cause of the problem more quickly.

Different languages are available for assertions, such as Sugar from IBM, Open Vera (OVA)
from Synopsys, and Open Verification Library (OVL) from Accellera. Recently, Accellera
accepted Sugar as a basis for a standardized property specification language--PSL
(www.pslsugar.org). Since the IEEE has standardized PSL, it will be an added benefit for
assertion users.

Shailesh Dave is project manager for ASIC design & Verification Group at eInfochips
(www.einfochips.com). He holds bachelor's degrees in electronics and communications. He has
over 5 years of experience in chip design and verification. He started his career in chip design as
a verification engineer. He has worked as Design and Verification engineer for designs like PCI
Express, graphic designs, DSP blocks, UMTS based receivers using HighLevel Verification
Languages, Assertions and emulators like Palladium. Shailesh can be reached at:
shailesh.dave@einfochips.com.

